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Abstract

Large language models have achieved impres-
sive few-shot performance on a wide variety
of tasks. However, in many settings, users
require confidence estimates for model pre-
dictions. While traditional classifiers produce
scores for each label, language models instead
produce scores for the generation which may
not be well calibrated. We compare generations
across diverse prompts and show that these can
be used to create confidence scores. By uti-
lizing more prompts we can get more precise
confidence estimates and use response diver-
sity as a proxy for confidence. We evaluate this
approach across ten multiple-choice question-
answering datasets using three models: T0,
FLAN-T5, and GPT-3. In addition to analyzing
multiple human written prompts, we automati-
cally generate more prompts using a language
model in order to produce finer-grained confi-
dence estimates. Our method produces more
calibrated confidence estimates compared to
the log probability of the answer to a single
prompt. These improvements could benefit
users who rely on prediction confidence for
integration into a larger system or in decision-
making processes.

https://github.com/JHU-CLSP/
Confidence-Estimation-TrustNLP2023

1 Introduction

The modern framing of language modeling prob-
lems now includes the ability to perform numer-
ous tasks previously handled by specialized super-
vised discriminative systems. For example, bi-
nary and multi-class classification tasks can be
framed as text generation, where a large language
model (LLM) is given the input and the possi-
ble labels, and it generates the best label. More
broadly, many reading comprehension, reasoning,
and question-answering (QA) tasks can be framed
in this multiple-choice style. An advantage to fram-
ing tasks in this manner is the ability to perform

Figure 1: A comparison of our proposed prompt agree-
ment confidence scores (2) and the commonly used log
probability (1). Log probability is based on a single
prompt, while the prompt agreement confidence esti-
mate uses multiple prompts to determine a confidence
estimate using (2a) the log probabilities from majority
label or (2b) the Rand index of label frequencies.

few-shot learning via in-context learning, in which
a task can be performed based on only a handful of
examples (Arora et al., 2022; Brown et al., 2020;
Kojima et al., 2022; Sanh et al., 2021; Zhou et al.,
2022a). Instead of collecting a large dataset and
investing time in training a new model, a user could
utilize an existing LLM for a new task by labeling
a few examples and crafting a prompt: the input
template which instructs the model to perform the
given task.

One challenge to utilizing LLMs in this manner
is producing well-calibrated confidence scores for
model predictions. A calibrated confidence score
aids in the interpretation of model predictions (Guo
et al., 2017) and may be crucial if models become
integrated into high-risk domains like healthcare
and finance (Jiang et al., 2021). A model is consid-
ered well calibrated if its prediction probabilities
are aligned with the actual probability of its pre-
dictions being correct (Jiang et al., 2021). If a
model says an answer has 90% confidence, then
we should expect it to be correct 90% of the time.

https://github.com/JHU-CLSP/Confidence-Estimation-TrustNLP2023
https://github.com/JHU-CLSP/Confidence-Estimation-TrustNLP2023


Formally, the probability that the predicted label Ŷ
is equal to the correct label Y for input X should be
equal to the model’s predicted confidence (Nguyen
and O’Connor, 2015). For supervised discrimina-
tive systems, confidence scores emerge from out-
put probabilities or normalizing model scores to
be between 0 and 1. For linear models, posterior
probability serves as a reasonable confidence score
because as the amount of evidence that supports
prediction Y increases, confidence also increases
(Dong et al., 2018). However, prior work shows
that these probabilities are not well calibrated for
non-linear models (Johansen and Socher, 2017).

It is less clear how we can obtain confidence
scores from LLMs. One approach is to use the
(log) probability of the generation. However, these
scores correspond to the likelihood of a text se-
quence given some context, as opposed to the ac-
tual probability of the label. For example, the
model may assign probability mass to alternate
generations that reflect the same answer (e.g. “An-
swer A” vs. “The answer is A”). Other creative
approaches include asking the model to generate
statements of confidence (e.g. “90% confidence in
the label”), but it is unclear how to calibrate these
open-ended statements (Lin et al., 2022). Model
self-consistency can be used to identify the most
confident model output, but it is unclear how to
produce a meaningful score (Wang et al., 2022).
Instead, we turn to another trend in LLMs: diverse
prompts. Sanh et al. (2021) showed that by writ-
ing variations of prompts for a range of tasks, they
produced models better able to generalize to new
domains. Similarly, Chung et al. (2022) found
that training on a diverse set of tasks improved
model performance. We consider whether measur-
ing the stability of an answer across a diverse set of
prompts can be used to estimate model confidence.

We propose to measure LLM answer confidence
by prompt agreement, whether the response of a
model remains consistent across multiple prompts
for a given instance. We prompt an LLM with
multiple different prompts that instruct the model
to perform the same task for a single input instance
and measure the agreement of the model responses
across these prompts. We consider two approaches,
represented in Figure 1. First, we measure the log
probability of the response across multiple prompts
that agree on the answer. Second, we measure the
diversity in answers across different prompts in
the model output, concluding that answers which

appear in more responses have relatively higher
confidence. We compare these methods to the log
probability of the answer produced in response to
the official task prompt. We find that across a range
of datasets and models, our methods consistently
provide more accurate estimates of confidence.

Our contributions are as follows:

• We show that the confidence estimate based
on multiple prompts more accurately reflects
the chance that a model is correct as compared
to log probabilities from a single prompt.

• We demonstrate these results on ten multiple-
choice QA datasets and three models: T0++
(Sanh et al., 2021), FLAN-T5 XXL (Chung
et al., 2022), and GPT-3 (Brown et al., 2020).

• We utilize automated prompt generation meth-
ods to test whether they can be used in place
of human-authored prompts to create better
confidence estimates.

2 Related Work

We present the relevant background concepts of in-
context learning and prompt sensitivity, and then
outline approaches to confidence estimation.

2.1 In-Context Learning
Recent work has shown that model performance
can be improved by in-context learning (ICL), in
which the model is conditioned on a natural lan-
guage instruction and several demonstrations of
the task (few-shots) and then completes additional
instances of the task by predicting what comes next
(Radford et al., 2019; Brown et al., 2020).

However, the efficacy of ICL varies depending
on the prompt. Prompts that appear semantically
similar to humans can still yield different results
(Gao et al., 2021; Schick and Schütze, 2021), and
many efforts have explored best practices for few-
shot learning. Techniques have emerged to assist
prompt engineers with creating and selecting the
best prompts (Sorensen et al., 2022). In addition
to the choice of prompt, performance varies based
on the choice of training examples and the order
of the training examples (Zhao et al., 2021). This
sensitivity makes ICL less reliable in practice.

Chen et al. (2022) found that sensitive predic-
tions were less likely to be accurate. This suggests
that a model’s predictions may be less accurate
when they lack consistency (Zhou et al., 2022b),
defined as the model’s ability to make the same
prediction across generations for the same input



(Wang et al., 2020). Consistency has been used
in semi-supervised learning and ensemble learning
to encourage predictions to be consistent across
perturbations of the input, such as noise or para-
phrasing (Bachman et al., 2014; Sajjadi et al., 2016;
Xie et al., 2019; Zhai et al., 2019). Consistency in-
spires our approach to estimating con�dence based
on model behavior across a set of prompts.

2.2 Con�dence Estimation

Con�dence estimation is the counterpart to uncer-
tainty estimation, which quanti�es a model's lack
of con�dence in its predictions. Previous work
has shown that modeling uncertainty improves
task performance on neural machine translation
(Wang et al., 2019), document quality prediction
(Shen et al., 2019), sentiment analysis, named en-
tity recognition, and language modeling using con-
volutional and recurrent neural network models (?).

Work on model con�dence estimation for NLP
has included a range of models–Naive Bayes and
logistic regression (Nguyen and O'Connor, 2015),
neural networks (Jagannatha and yu, 2020)–and
tasks—structured prediction (Jagannatha and yu,
2020), natural language understanding (Desai and
Durrett, 2020; Kamath et al., 2020; Kong et al.,
2020), and neural machine translation systems (Ku-
mar and Sarawagi, 2019). Kamath et al. (2020)
found that QA models are overcon�dent in out-of-
domain tasks when asked to answer as many ques-
tions as possible while maintaining high accuracy.
More recently, this work has turned to language
models, and researchers have struggled to obtain
sensible con�dence measures. Jiang et al. (2021)
found that language models such as T5, BART, and
GPT-2 did not produce well-calibrated scores based
on generation probabilities for QA tasks.

A variety of methods have been proposed to ob-
tain calibrated con�dence measures from LLMs.
Jiang et al. (2021) experiment with several calibra-
tion methods, including �ne-tuning, post hoc prob-
ability modi�cation, or adjustment of the predicted
outputs or inputs. Kong et al. (2020) use a regu-
larized �ne-tuning method to obtain better calibra-
tion for both in-distribution and out-of-distribution
data. Xiao et al. (2022) focus on the design choices
for pre-trained language model-based prediction
pipelines, suggesting that the calibration of the
model depends on the choice of the �ne-tuning
loss function. Desai and Durrett (2020) demon-
strated a more calibrated model trained with label

smoothing. Unfortunately, these methods are not
feasible for LLMs such as GPT-3, which have al-
ready been trained and cannot be easily modi�ed
without substantial compute power or model ac-
cess.

An alternative approach is to rely on post hoc cal-
ibration methods. Established techniques include
training a separate, smaller model to identify in-
correct predictions (Kumar and Sarawagi, 2019;
Kamath et al., 2020) or to adjust predictions (Iso-
tonic Regression (Niculescu-Mizil and Caruana,
2005) and forecaster (Jagannatha and yu, 2020)),
but these methods require a separate validation set.
Similarly, a validation set can also be used for tun-
ing decoding hyperparameters for better calibration,
as in temperature scaling (Desai and Durrett, 2020;
Jiang et al., 2021). Dong et al. (2018) present met-
rics to measure three kinds of uncertainty (model
uncertainty, data uncertainty, and input uncertainty)
that may lead to miscalibration. Our work con-
tributes to the ongoing work of calibration through
post hoc techniques, which are still feasible for
larger models, particularly when we lack access to
the model weights or don't have the compute to
�ne-tune the model. Instead of requiring access
to validation sets or training external models, we
introduce a stand-alone method.

Our approach utilizes a post hoc con�dence es-
timate for a generated model prediction by mea-
suring agreement across multiple prompts. The
idea of majority voting and prompts appears in
several related studies. Zhou et al. (2022a) rely
on the idea that a single task can be described by
multiple prompts, and encourage model behavior
to be consistent across different prompts (prompt
consistency). They use consistency across prompts
to engineer new prompts as written by an LLM.
Wang et al. (2022) use self-consistency to improve
chain-of-thought reasoning. They found a correla-
tion between consistency and accuracy, suggesting
that consistency provides an estimate of how cer-
tain the model is about its generations. Arora et al.
(2022) use voting in their Ask Me Anything (AMA)
prompting method to determine an input's label
by collecting noisy votes from a set of machine-
generated prompts that vary in quality. A version of
BARTSCORE(BARTSCORE-PROMPT) utilizes a
similar prompt-ensembling scheme (with generated
prompts) for prompting BART to score summariza-
tion quality (Yuan et al., 2021). These studies pro-
vide support for our idea that majority voting can



inform con�dence scores.
Finally, Lin et al. (2022) take a unique approach

to obtaining con�dence from LLMs: they ask the
model! For example, GPT-3 generates con�dence
estimates when asked to verbalize its con�dence
with statements like “90% con�dence.” While
these generations cannot easily be compared and
calibrated across tasks, it further suggests that mod-
els have some notion of con�dence.

The idea of model con�dence is related to the
style of generation and the certainty with which
a model expresses answers. Informal analyses of
models, especially those focused on scienti�c gen-
erations like Galactica (Taylor et al., 2022), have
found that models frame answers in a con�dent
tone regardless of the actual factuality of the state-
ment. This observation of answer framing may be
related to our task of assigning a con�dence score
to a generation.

3 Estimating Con�dence through
Multiple Prompts

We propose estimating model con�dence through
multiple prompts based onprompt agreement, i.e.,
the consistency among a model's generations in
response to a set of diversely worded prompts. We
prompt the model multiple times using different
prompts, each of which asks the model to respond
to a given question-answer (QA) input. Intuitively,
the more often that different prompts favor the same
generation, the greater con�dence the model has
in that generation. For example, suppose that for
a given question queried across ten prompts, the
model always replieseggplant. For a second ques-
tion queried with the same prompts, the model
answerspotato(5 times) andeggplant, cucumber,
squash, carrot andkale. We would say the model
is more con�dent in its answer to the �rst question.

We score con�dence via prompt agreement in
two ways: (1) log probabilities across multiple
prompts and (2) answer agreement across multiple
prompts. We compare these to a baseline of the log
probability of the response to a single prompt.

3.1 Log Probabilities

Log probability of the generation is a common
method for con�dence estimation (Jiang et al.,
2021; Nguyen and O'Connor, 2015; Dong et al.,
2018). For each instance we query the model using
the single, of�cial task prompt for the dataset and

use the log probability of the generation.1

3.2 Log Probabilities Across Prompts

For each instance, we query the model with each
available prompt and record the resulting answer
and associated log probability. We compute the
majority labelacross these prompts and assign it a
con�dence of the average log probabilities across
these prompts. Figure 1 shows this technique in
practice (2a), where the model predicts A three
times and B twice, making A the majority label.
The con�dence estimate is the average of the log
probabilities from each time A was predicted. In
case of a tie, we compute the average log probabil-
ity of each tied answer and select the answer with
the highest average log probability.

3.3 Answer Agreement Across Multiple
Prompts

A drawback to averaging the log probabilities of
the majority is that it does not re�ect overall agree-
ment across the prompts. Consider the example
in Figure 1, where the model predicts “A” three
times and “B” twice and compare to a case where
the model predicts “A” three times, “B” once and
“C” once. The model appears to be more uncertain
in the second case, yet averaging the majority log
probability would yield the same score.

We create a con�dence score that re�ects an-
swer agreement across multiple prompts. We count
the number of times the model predicts each an-
swer and view this agreement list as a form of
clustering of the prompts into answer bins. We use
Rand index (Rand, 1971), a metric that measures
similarity between two clusterings, to quantify the
amount of agreement within this list. We compute
the Rand index between the observed “clustering”
and the “ideal” clustering, where the model pre-
dicts the same answer for every prompt (highest
con�dence). This measure naturally incorporates
cases with varying numbers of prompts.

The resulting Rand index is a con�dence score
for answer agreement across multiple prompts. We
note that unlike our other methods, this does not
yield a probability. We address this in our evalua-
tion metrics below.

1Section 4 details how we obtain these scores for each
model.



4 Models

Our con�dence estimation methods are compatible
with multiple language models. We evaluate our
methods on three popular models, chosen because
of their strong few-shot task performance, and fo-
cus on the largest models in each model “family”
because they are the highest performing.

For T0++ and FLAN-T5, we use the Hugging
Face implementations locally.2

T0++ is an 11B parameter T5-based model that
was trained with a multitask mixture and multiple
prompts on 55 datasets to improve zero-shot task
generalization (Sanh et al., 2021).

FLAN-T5-XXL is an 11B parameter T5 model
(Raffel et al., 2019) �ne-tuned on 1.8k instruction
oriented tasks (Chung et al., 2022). Task �ne-
tuning (FLAN) produces state-of-the-art results on
few-shot performance across several benchmarks.

GPT-3 is a 176B parameter GPT-style model
trained with a causal language modeling objective
(Brown et al., 2020). We usetext-davinci-002 ,
an instruction-tuned version of GPT-3 (Ouyang
et al., 2022), through the OpenAI API. Due to the
restrictions in obtaining all token logits in a single
API call, we generate a model response and match
it to the closest answer choice for cost ef�ciency.
See Appendix A for details.

For each prompt and for each QA instance, we
need to obtain (1) the model's selected answer from
the multiple-choice list and (2) the log probability
of the selected answer. To obtain the best answer
we userank scoring, which evaluates the model
log probability for generating each answer from
the multiple-choice list and selects the best option
(Brown et al., 2020; Sanh et al., 2021). For T0++
and FLAN-T5-XXL we use Sanh et al. (2021)'s
publicly available evaluation code,3 modifying it
to return log probabilities of the answers. We run
these models on a compute instance with 4 A100
40GB GPUs, with a per-device batch size of 8 for
all datasets except Dream (batch size of 1).

Finally, we omit results for automatically gener-
ated prompts for GPT-3 due to the high �nancial
cost of using the API for so many prompts. We
include these results for the other methods.

2https://huggingface.co/bigscience/T0pp and
https://huggingface.co/google/flan-t5-xxl

3https://github.com/bigscience-workshop/
t-zero/blob/master/evaluation/run_eval.py

Figure 2: An example of a prompt template applied to a
QA instance.

5 Data

We evaluate our method across ten multiple-choice
question-answering datasets. For each dataset, we
have the of�cial task prompt and a source of di-
verse prompts for the same task. Within a dataset,
each instance contains contextual information, a
series of multiple-choice answers, and annotations
indicating the correct answer.

We use the following multiple-choice QA
datasets from the T0 training mixture (Sanh et al.,
2021): CoS-E v1.11 (Rajani et al., 2019), Cos-
mos QA (Huang et al., 2019), DREAM (Sun et al.,
2019), QASC (Khot et al., 2020), Quail (Rogers
et al., 2020), Quarel (Tafjord et al., 2019a), Quartz
(Tafjord et al., 2019b), SciQ (Welbl et al., 2017),
Social IQA (Sap et al., 2019), and WIQA (Tandon
et al., 2019). We exclude WikiHop (Tu et al., 2019)
due to the extra computational resources needed
for this dataset. We use only the validation splits.

6 Prompts

We pair these datasets with three sources of
prompts: the of�cial task prompt and two sources
for diverse set prompts for each task. First, we use
the of�cial task prompt as de�ned in the original
paper for each dataset.

Second, we use the diverse human-authored
prompts provided by Sanh et al. (2021). Each
prompt is a template that contains text strings
and placeholders to insert the question and answer
choices (see Figure 2). We only use the T0 prompts
that correspond to the original task intended by the



dataset's authors. We refer to these as the Multi-
ple Human prompts. We apply these prompts to
the QA data using the PromptSource library (Bach
et al., 2022) and evaluation code for T0.3

Third, we create a larger set of prompts through
automated prompt generation. While having multi-
ple prompts leads to better con�dence scores, not
every task has multiple human-authored prompts
available. Furthermore, if multiple prompts are
helpful, perhaps a larger set would provide more
�ne-grained con�dence estimates. Automatically
generating prompts addresses both of these cases.

Many methods have been proposed for automat-
ically generating LLM prompts. Most prompt gen-
eration methods assume either a single prompt for
a task (Shin et al., 2020; Zhong et al., 2021; Gao
et al., 2021) or a unique prompt for each input (Wu
et al., 2022; Zhang et al., 2022). Instead, we seek
to generate multiple prompts for each task. We
draw inspiration from the iterative prompt gener-
ation process of Zhou et al. (2022b), which gen-
erates paraphrases of a prompt by asking a LLM
to paraphrase instructions with differentprompt
generation prompts (PGP). For example, by pro-
viding an LLM the PGP “Generate a variation of
the following instruction while keeping the seman-
tic meaning,” we can obtain prompt variations. We
use a total of 15 PGPs (listed in Table 8 in Ap-
pendix E.2), 14 of which we authored and the �nal
PGP being from Zhou et al. (2022b). Figure 3
summarizes the prompt generation process.

We use this method with GPT-3
text-davinci-002 to generate a set ofAu-
tomatically Generated Prompts(AGPs) based
on 31 instruction statements extracted from the
T0 prompts (listed in Table 9 in Appendix E). We
generate multiple prompts for each GPT-3 query
with a temperature of 0.7 to allow for randomness
and repeat each query 3 times. We obtained 465
paraphrase queries (31 T0 instructions� 15 PGPs),
which repeated 3 times gives 1395 paraphrases.
After removing duplicates, the number of unique
paraphrases per dataset varies, ranging from
16 for WIQA to 158 for Quartz. We insert the
paraphrased instructions into the existing dataset
templates (which indicate where the question and
answer choice should go) to generate new prompt
templates. For each dataset, we limit the total
number of AGPs to 50 by random selection.

Table 3 in Appendix C shows the number of
prompts for each dataset: a single of�cial prompt,

Figure 3: We create prompts by using GPT-3 to generate
paraphrased instructions and inserting the paraphrased
instructions into a dataset prompt template.

a set of Multiple Human prompts, and a larger set
of AGPs.

7 Evaluation

Does measuring con�dence across multiple
prompts yield better calibrated con�dence scores?
A common approach to measuring calibration isex-
pected calibration error (ECE) (Guo et al., 2017),
which buckets the prediction probabilities and mea-
sures the empirical accuracy of each bucket with its
average estimated probability (con�dence).4 The
discrepancy between these terms is the calibration
gap; lower gaps indicate better calibration. ECE
ranges from 0 (perfect calibration) to 1 (lowest cal-
ibration). We utilize this method to compare log
probabilities obtained from a single prompt to those
from multiple prompts. For each dataset, we use
10 evenly-spaced bins and set the min and max of
the bins according to the minimum and maximum
average log probability in the dataset.

We measure agreement across prompts using
Rand index, which does not give normalized
scores that can be interpreted as probabilities. We
could convert these scores into probability con�-
dence scores in two ways. 1) Measure the empiri-
cal accuracy of different ranges of Rand index on
a held-out validation set, then assign con�dence
scores based on those accuracies. The drawback
to this approach is it requires a separate held-out
set for calibration, which may be an unrealistic
assumption, especially in few-shot settings. 2) Nor-
malize the empirical Rand index scores to form a

4While Nixon et al. (2019) found shortcomings of ECE to
measure calibration for deep learning models, it still serves as
best practice in this area.



probability distribution. We experimented with this
approach but found that how we bucketed and nor-
malized the scores heavily in�uenced ECE results,
which produced an unfair evaluation setting.

Instead, we view Rand index scores as arelative
con�dence scorebetween instances, where a higher
score means “more con�dent.” We propose an
evaluation metric that considers relative con�dence
of answers between instances. We rank instances
in a dataset according to their con�dence scores
(log probability or Rand index), with the highest
scoring instance (e.g., largest log probability or
Rand index) at the top of the list. We evaluate each
con�dence estimation method on how well it ranks
correct predictions higher than incorrect ones.

Most evaluation metrics for ranking are geared
towards an information retrieval setting where the
number of items in the list can vary, different items
can be included by each model, only a few items
are “relevant”, or we have close to a total ordering
over the ranked items. Our ranked lists differ signif-
icantly from these settings. Therefore, we choose
a simple, intuitive ranking evaluation:swapped
pairs, based on the ranking loss function from
Díez Peláez et al. (2006); Joachims (2002). A list is
scored based on the number of item pairs that need
to be swapped to create a correct ordering. This
penalizes methods that have higher con�dence in
predictions that were incorrect over correct predic-
tions. Swapped pairs is not normalized and grows
with the number of items in a ranked list (from 0,
i.e., perfect rank ordering, ton� (n� 1)

2 , i.e., worst
rank ordering, wheren is the number of items to
be ranked). We report macro-averaged results by
dividing the total swapped pairs by dataset size,
after �ltering out any invalid predictions.5

8 Results

Multiple prompts provide a more calibrated
con�dence estimate than a single prompt. Ta-
ble 1 shows the results for ECE and Swapped pairs
across con�dence methods and models. Estimat-
ing con�dence using multiple prompts consistently
provides a better calibrated score as compared to
con�dence scores based on a single prompt. For
ECE, using the log probability for multiple human-
authored prompts always improves over a single
prompt. Additionally, we observe that the ECE and
swapped pairs metrics are in agreement with each

5We experimented with other normalized methods but the
ordering of the methods were unchanged in the results.

other; across each method and model they yield
the same ordering of the results, supporting our
assertion that swapped pairs is a suf�cient metric
for measuring relative con�dence scores. This in-
dicates that swapped pairs can be used to evaluate
calibration. Additionally, we observe that different
models vary considerably in their scores. Speci�-
cally, we �nd that T0++ and GPT-3 are much better
calibrated than FLAN-T5-XXL, although using our
method dramatically decreases the gap. This may
be partly explained by the differences in model
accuracy on these QA tasks, as discussed below.

Measuring con�dence using prompt agreement
with human-authored prompts also improves over
using a single prompt as measured by swapped
pairs. There is not a clear winner between the log
probability and agreement methods, as each obtains
the most calibrated scores for some models. How-
ever, both ways of using multiple human-authored
responses improve over a single prompt.

Automatically generated prompts show mixed
results. Sometimes automatically generated
prompts improve over a single prompt (ECE on
FLAN-T5-XXL), and sometimes they do not. We
suspect that this may be related to the quality of
the prompts. Poorly written prompts that obtain
worse accuracy on the task give worse con�dence
scores. To test this hypothesis, for each dataset we
select the top 10 prompts with the highest accuracy
on the validation set. We compare the con�dence
scores from using these 10 prompts with the scores
from using all AGPs. However, this �ltering still
does not yield consistent improvements on ECE
or swapped pairs. There may be other factors that
prevent automatically generated prompts from
producing better con�dence scores. For example,
they may have insuf�cient diversity or may be
worse in some other manner. In contrast, we know
that the human-authored prompts were carefully
written by people who have experience prompting
language models. Despite the poor performance
of AGPs, they still show improved performance
over a single prompt, indicating that AGPs could
serve as a substitute for human-authored prompts
if human-authored prompts are not available.

The multiple human-written prompts method
appears to be the most calibrated overall.
There is not a clear trend as to which method should
be used in practice. For example, Table 1 shows
that the best method for T0++ is Human + Mul-



ECE (#) Swapped Pairs (#)
Con�dence Method T0++ FLAN-T5-XXL GPT-3 T0++ FLAN-T5-XXL GPT-3

Human Prompts
- Single / log-prob 5.66 7.35 4.18 137.14 203.93 133.68
- Multiple / log-prob 1.61 2.39 2.23 89.53 135.52 130.23
- Multiple / agreement - - - 125.75 128.87 105.36
Automatically Generated Prompts
- Top 10 / log-prob 6.17 4.89 - 154.05 166.81 -
- Top 10 / agreement - - - 168.56 123.08 -
- All / log-prob 6.20 5.23 - 153.57 169.97 -
- All / agreement - - - 164.28 118.52 -

Table 1: Expected Calibration Error (ECE) and Swapped Pairs results by model (T0++, FLAN-T5-XXL, GPT-3),
prompt type (human written or automatically generated; single or multiple), and con�dence estimation method (log
probability or agreement).

Accuracy
Con�dence Method T0++ FLAN-T5-XXL GPT-3

Human Prompts
- Single / max log-prob/agreement 0.69 0.61 0.56
- Multiple / max log-prob 0.76 0.74 0.65
- Multiple / agreement 0.80 0.80 0.69
Automatically Generated Prompts
- Top 10 / max log-prob 0.72 0.74 -
- Top 10 / agreement 0.72 0.75 -
- All / max log-prob 0.71 0.72 -
- All / agreement 0.72 0.74 -

Table 2: Accuracy by model (T0++, FLAN-T5-XXL, GPT-3) and prompt type (human written or automatically
generated; single or multiple), where the prediction is either the label with the maximum log probability or the
majority label. Note that because the Single prompt setting contains only one prompt, Single / max log-prob and
Single / agreement result in the same accuracy.

tiple / log-prob, while AGP + All / agreement is
best for FLAN-T5-XXL. However, we can see that
across all models, using multiple prompts (typi-
cally human-written prompts, opposed to AGPs)
performs the best, suggesting that it would be the
most promising con�dence method in practice.

Higher accuracy is linked to a larger improve-
ment in calibration. We now consider how the
accuracy for each type of prompt is correlated with
improvements in calibration from using multiple
prompts. From the accuracy results in Table 2,
we observe that T0++ achieves the highest accu-
racy and is the best calibrated among the models,
while FLAN-T5-XXL achieves the same level of
accuracy with lower calibration. Using multiple
prompts rather than a single prompt consistently re-
sults in higher accuracies across all models, which

may be why T0++ is better calibrated. However, we
�nd that GPT-3 has a worse accuracy than FLAN-
T5-XXL, yet GPT-3 is better calibrated than FLAN-
T5-XXL according to ECE.

9 Conclusion

Our experiments with T0++, FLAN-T5-XXL, and
GPT-3 suggest that prompt agreement provides
a more calibrated con�dence estimate than the
typical approach of log probability from a single
prompt. We �nd mixed results in scaling up the
number of prompts using automatically generated
prompts. Experimenting with additional prompt
generation methods may enable the automatically
generated prompt approach to produce even bet-
ter calibrated con�dence scores. We leave this to
future work.



Limitations

The main limitation of this work is the lack of
human evaluation. Since con�dence scores are
typically used for model explainability, a practical
evaluation of scores from our method would be a
human-in-the-loop scenario where a user is tasked
with understanding a system and making decisions
based on the output. The primary questions for this
human study would be to determine if our scores
are more useful to users than other methods, such
as log probabilities, and would being presented
with con�dence scores lead to different decisions.

Second, we focused on multiple-choice ques-
tions, with a speci�c set of possible options. Since
MC QA and classi�cation are so similar, our analy-
sis of many MC QA datasets is suf�cient to show
that our method works for text classi�cation. How-
ever, there are other use cases for these models that
do not have pre-determined answer choices, such
as open-ended questions or summarization.

Third, while we supported our decision to only
use the largest models in each model family due to
their superior performance, we acknowledge that
replicating our study across different model sizes
(e.g., FLAN-T5-Small, -Base, -Large, -XL, -XXL),
is useful for ensuring our method is robust to the
number of parameters.

Further, we acknowledge a drawback of our
method is the dif�culties in comparing across other
calibration techniques since the Rand index scores
are not normalized. While there are ways to normal-
ize the scores (see Section 7), we decided against
these methods in our evaluation because they were
either against our zero-shot setting or heavily in-
�uenced ECE results based on how scores were
normalized.

We leave these questions to future work.
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A Generating Predictions from GPT-3

The GPT-3 API does not allow direct access to all
the token probabilities, and the method of gathering
logits through multiple API calls for each answer
choice is cost-prohibitive. In order to perform rank
scoring with GPT-3, we generate the best answer
from the model by asking for deterministic genera-
tions (temperature of 1) and using<|endoftext|>
as the stop token. We take the log probability as
the sum of the token log probabilities up to and
including the �rst<|endoftext|> token.

While GPT-3 generally does well at following
directions, it often does not generate an answer
which exactly matches one of the multiple-choice
options. We map each GPT-3 generation to one
of the valid options by �nding the answer that has
the greatest 1,2-gram overlap with the generation
(after lowercasing and removing punctuation and
whitespace). We label a GPT-3 response asinvalid
if it has no overlap with a valid option. When eval-
uating con�dence estimates, we �lter out instances
that resulted in at least one invalid prediction for
a prompt. See Table 10 for statistics about the
number of valid GPT-3 predictions.

B Dataset Information

We present information about the datasets in Ta-
ble 10: links to access to datasets on Hugging Face,
the size of validation split, the number of instances
that GPT-3 generated valid predictions for on the
of�cial prompt, and the number of instances that
GPT-3 generated valid predictions for across all
Multiple Human prompts.

C Number of Prompts Per Dataset

Table 3 shows the number of Multiple Human (MH)
prompts and automatically generated prompts
(AGP) per dataset. In addition to these prompts,
each dataset has a single prompt (Of�cial Prompt)
which comes from the paper in which the dataset
authors introduced the dataset.

D Con�dence and Accuracy per Dataset

D.1 Con�dence

Table 4 shows the ECE and swapped pairs re-
sults for each dataset when using human-written
prompts. Table 5 shows the ECE and swapped pairs
results for each dataset when using automatically-
generated prompts.

Dataset MH AGP
CoS-E v1.11 6 48
Cosmos QA 10 50
DREAM 2 19
QASC 5 50
Quail 10 50
Quarel 5 39
Quartz 8 50
SciQ 4 50
Social IQA 4 25
WIQA 2 16

Table 3: The number of Multiple Human (MH) Prompts
and Automatically Generated Prompts (AGPs) per
dataset.

D.2 Accuracy

Table 6 shows the accuracy results for each dataset
when using human-written prompts. Table 7 shows
the accuracy results for each dataset when using
automatically generated prompts.

E Automatically Generated Prompts

E.1 Instructions Used for Prompt Generation

In Table 9, we list the instructions that were used
to generate additional prompts. These instructions
come from the prompts used to train T0 (Sanh et al.,
2021).

E.2 Prompt Generation Prompts

In Table 8, we list the prompt generation prompts
(PGP) that were used generate new prompts.
Within each PGP, we substitute an instruction from
Table 9 in place of “{{ instruction }}” before gath-
ering a response from GPT-3.

E.3 Paraphrased Instructions

In Table 11, we provide the number of paraphrased
instructions per dataset. We include statistics about
the total number of unique paraphrased instructions
and the �nal number of paraphrased prompts (after
randomly selecting up to 50 prompts per dataset).
In Tables 12 to 21 we provide the paraphrased in-
structions for each dataset.




