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Abstract

This paper presents a comprehensive analy-
sis of explainable fact-checking through a se-
ries of experiments, focusing on the ability of
large language models to verify public health
claims and provide explanations or justifica-
tions for their veracity assessments. We exam-
ine the effectiveness of zero/few-shot prompt-
ing and parameter-efficient fine-tuning across
various open and closed-source models, exam-
ining their performance in both isolated and
joint tasks of veracity prediction and expla-
nation generation. Importantly, we employ
a dual evaluation approach comprising pre-
viously established automatic metrics and a
novel set of criteria through human evalua-
tion. Our automatic evaluation indicates that,
within the zero-shot scenario, GPT-4 emerges
as the standout performer, but in few-shot and
parameter-efficient fine-tuning contexts, open-
source models demonstrate their capacity to not
only bridge the performance gap but, in some
instances, surpass GPT-4. Human evaluation
reveals yet more nuance as well as indicating
potential problems with the gold explanations.

1 Introduction

The recent COVID-19 pandemic has highlighted
the critical need for fact-checking within the public
health domain. In an era where information spreads
swiftly across social media platforms, the feasibil-
ity of manual fact-checking is significantly chal-
lenged. Misinformation within the health domain
can have severe, even fatal consequences, under-
scoring the vital role of automated fact-checking
mechanisms in averting potential crises and pro-
tecting public health (Kotonya and Toni, 2020b;
Sarrouti et al., 2021; Vladika et al., 2023).

The ability to provide clear explanations is a cru-
cial part of effective fact-checking, given that fact-
checkers need to convince their audience of their
evidence-backed conclusions (Guo et al., 2022).

While certain machine learning models like deci-
sion trees and linear regression inherently offer a
degree of explainability due to their simple oper-
ational frameworks, the landscape changes drasti-
cally with neural network-based Large Language
Models (LLMs). These models, which stand at the
cutting edge of automated fact-checking, present
significant challenges in terms of interpretability
and explainability (Atanasova et al., 2020). To ad-
dress these challenges, there have been efforts to
develop explainable fact-checking methods that em-
ploy attention mechanisms, rule discovery, or sum-
marization techniques (Kotonya and Toni, 2020a).
Our study focuses on Natural Language Explana-
tion (NLE), a strategy where models generate tex-
tual justifications for their predictions tailored to
specific inputs.

To our knowledge, the application of LLMs to
the generation of explanations in fact-checking con-
texts remains unexplored. Here, we take a step in
this direction by carrying out an extensive eval-
uation of both open- and closed-source LLMs in
assessing the veracity of public health claims and in
generating explanations for these assessments. We
report results for zero- and few-shot prompt-based
learning (Liu et al., 2023) and Parameter-Efficient
Fine-Tuning (Mangrulkar et al., 2022, PEFT).

In assessing the quality of the explanations gen-
erated, we employ a dual evaluation strategy that
combines automatic metrics with human evalua-
tion. This holistic approach is designed to capture
a more accurate picture of explanation effective-
ness, recognizing that a single metric or method
may not fully grasp the nuances of explanation
quality (Luo et al., 2021).

According to our automatic evaluation, the GPT
family of LLMs outperform the open-source mod-
els (Falcon-180B, Llama-70b, Vicuna-13, Mistral-
7b) on the task of veracity prediction in the zero-
shot setting. This performance gap narrows in the
few-shot setting, showcasing the potential of open-



Context

The Pennsylvania Department of Health says people may have been exposed to measles between Aug. 22 and Aug. 29 in
York County and Hershey. Health officials say a patient in WellSpan York Hospital has a confirmed case of measles, which
can be highly contagious. The hospital is notifying patients, staff and visitors who were in either the hospital or WellSpan
Stony Brook Health Center. Officials say the risk of getting measles is minimal for anyone properly immunized against the
disease.

Claim Label Explanation

Public warned of possible measles expo-
sure in Pennsylvania.

True State health authorities are warning the public about possible measles
exposure at a number of Pennsylvania locations over the past week.

Table 1: A random sample from PUBHEALTH test set. The context is a summary of the original context.

source models with limited examples. The best
performance is achieved using PEFT. This trend
persists across both veracity prediction and expla-
nation generation tasks. Human evaluation demon-
strates that GPT-4, in a zero-shot setting, excels
in generating explanations that meet various eval-
uation criteria effectively. Further detailed man-
ual analysis of the explanations generated in both
isolated and joint tasks reveals that explanations
produced in the context of the joint task tend to
be of higher quality than those generated for the
explanation task alone.

Our contributions are two-fold: 1) we introduce
a novel set of guidelines for human evaluation of
explainable fact-checking, which we manually ap-
ply to hundreds of LLM-generated explanations,
yielding new insights.1 2) we conduct an exten-
sive series of experiments on the PUBHEALTH
dataset using closed- and open-source state-of-the-
art LLMs, exploring their strengths and weaknesses
via both human and automatic evaluations.

2 Related Work

Fact Checking Datasets. Some fact-checking
datasets include explanations that were collected
or generated automatically (Alhindi et al., 2018;
Stammbach and Ash, 2020; Gurrapu et al., 2022).
Other datasets (Schlichtkrull et al., 2023; Dai
et al., 2020) include question-answer pairs for each
example to facilitate explainable fact-checking.
AVERITEC (Schlichtkrull et al., 2023) consists
of more than 4.5K real-world claims fact-checked
by 50 organizations. Each claim is annotated with
question-answer pairs against the open web repre-
senting the evidence, a veracity label, and a textual
justification describing how the evidence (question-
answer pairs) supports the label. The FakeHealth
dataset (Dai et al., 2020) introduces binary criteria

1https://github.com/Zarharan/
NLE-for-fact-checking

for use in explainable fake health news detection.
Kotonya and Toni (2020b) present a novel dataset
(PUBHEALTH) for explainable fact-checking in
the public health domain. In contrast to the afore-
mentioned datasets, this dataset includes gold ex-
planations by journalists. We use it in our study. A
sample is shown in Table 1.

Methods. Atanasova et al. (2020) and Kotonya
and Toni (2020b) formulate explanation generation
as a summarization task which leads to an extrac-
tive explanation. Atanasova et al. (2020) explore
veracity prediction, explanation extraction, and a
joint model to address both providing explanations
and predicting veracity using LIAR-PLUS (Alhindi
et al., 2018). Their joint model achieved the best F1
scores for veracity prediction. However, training
jointly with veracity prediction does not outper-
form the explanation extraction model.

Boissonnet et al. (2022) and Chen et al. (2022)
propose a question-answering (QA) approach to
the explanation generation task. Boissonnet et al.
(2022) demonstrate that QA-based methods can
be competitive with summarization-based methods,
and even more appropriate when relevant informa-
tion is not explicitly provided.

Kotonya and Toni (2020b) introduce a explana-
tion generation framework based on abstractive-
extractive summarization, and propose three differ-
ent coherence metrics for evaluating the quality of
automatically generated explanations. In contrast,
we use PUBHEALTH to instruct LLMs to gener-
ate an explanation of the claim given a summary
of the related context, focusing on the generation
of Natural Language Explanations (NLE) (abstrac-
tive) rather than the extractive method. Abstractive
methods make explanations flexible (Luo et al.,
2021) and the models can justify different parts
of the context and generate fluent explanations in
simpler terms.

https://github.com/Zarharan/NLE-for-fact-checking
https://github.com/Zarharan/NLE-for-fact-checking


Figure 1: The pipeline for veracity prediction, explana-
tion generation, and the joint setting.

3 Methodology

Figure 1 provides a high-level overview of the three
tasks considered in our analysis: (1) assessing the
veracity of claims, (2) generating corresponding
explanations, and (3) joint veracity prediction and
explanation. In all tasks, the model receives a sum-
marized version of the original context along with
the corresponding claim as inputs. The explanation
model is also provided with the gold veracity label.

We instruct various closed- and open-source
LLMs with specific prompts for each task. In
the few-shot scenario, we individually optimize
the number of shots for each model and task. We
use the following prompts for the zero-shot experi-
ments, involving closed-source LLMs:
%% Veracity prediction
Context: X
Claim: Y
Based only on the context , categorize

the claim as:
- True (supported by context)
- False (contradicted by context)
- Mixture (partially supported/
contradicted)
- Unproven (not enough info)

%% Explanation generation
Context: X
Claim: Y
The claim veracity: Z.
Using only the context provided , explain

why the claim veracity is Z.

%% Joint model
Context: X
Claim: Y
Based only on the context , categorize

the claim as:
- True (supported by context)
- False (contradicted by context)
- Mixture (partially supported/
contradicted)
- Unproven (not enough info)

And explain your reasoning. Provide the
response in JSON format with the
following keys: veracity ,
explanation.

X, Y, and Z respectively represent the context
summary, the claim text, and the veracity label
of the claim. See Appendix A for details of the
few-shot tuning process.

Given that the closed-source LLMs are restricted-
access models entailing significant costs, we also
experiment with open-source LLMs. For fine-
tuning, we use parameter-efficient fine-tuning,
which aims to reduce the number of trainable pa-
rameters and has become a standard paradigm for
fine-tuning LLMs (Zhao et al., 2023). Specifically,
we opted for QLoRA (Dettmers et al., 2023) and
PEFT (Mangrulkar et al., 2022).

4 Experimental Details

4.1 Selected LLMs
The selected closed-source LLMs include three
state-of-the-art LLMs: GPT-3.5-D (Brown et al.,
2020, text-davinci-003), GPT-3.5-T (OpenAI,
2023b, gpt-3.5-turbo), and GPT-4 (OpenAI,
2023a). We used these models for in-context learn-
ing experiments only. We also use publicly avail-
able models, Falcon-180B (Penedo et al., 2023,
Falcon-180B), Llama-70B (Touvron et al., 2023,
Llama-2-70b), Vicuna-13B (Zheng et al., 2023,
vicuna-13b-v1.5-16k), and Mistral-7B (Jiang
et al., 2023, Mistral-7B-v0.1) for in-context
learning. Finally, we implement PEFT with Vicuna-
13B and Mistral-7B for all three tasks (see Sec-
tion 1.2 of Appendix A for more details).

4.2 Dataset
We employ PUBHEALTH (Kotonya and Toni,
2020b), which comprises more than 12.2K claims,
each accompanied by journalist-crafted gold-
standard explanations (or judgments) to substanti-
ate the fact-check labels assigned to these claims.
After collecting data from different fact-checking
sources, Kotonya and Toni (2020b) preprocessed
the data and standardized labels for 4-way classifi-
cation: true, false, mixture and unproven. Table 2
shows the distribution of veracity classes.

4.3 Context Summarization
In the PUBHEALTH dataset, the mean and median
word counts of articles are approximately 700 and
600 words respectively. So, to address the sequence
length limitation in different LLMs, particularly



Data Split True False Mixture Unproven Total

Train 5,077 2,999 1,432 290 9,798
Val 629 380 163 41 1,213
Test 599 387 201 45 1,232

Total 6,305 3,766 1,796 376 12,243

Table 2: The distribution of samples in PUBHEALTH
across the four veracity labels.

in our few-shot experiments, we summarized the
context of all instances in the dataset. Following
Zhang et al. (2023), who conducted a human evalu-
ation of news summary datasets and discovered that
the zero-shot summaries generated by instruction-
based LLMs were on par with summaries written
by humans, we manually compared the summaries
generated by two LLMs 1) gpt-3.5-turbo and 2)
text-davinci-003, on a small training set sample.
We tested both models with various prompts and
summary lengths, and opted for gpt-3.5-turbo.
While the results did not show significant dispar-
ities, gpt-3.5-turbo offered the same quality at
just 1/10th of the cost of text-DaVinci-003.2

The temperature was set to zero because we
did not need creativity for summarization. We
employed GPT-3.5-turbo to summarize arti-
cles containing fewer than 4,097 tokens, and
for articles exceeding 4,097 tokens, we used
gpt-3.5-turbo-16k. See Appendix B for details.

5 Evaluation

To assess veracity prediction, we use only auto-
matic metrics including accuracy, precision, recall,
and F1 (macro and weighted). To assess expla-
nations, we use both automatic and human evalu-
ation methods, in keeping with the recommenda-
tion of Luo et al. (2021) that NLE should include
human evaluation alongside automatic evaluation.
Note that gold explanations often exhibit a more
abstractive nature than explanations generated by
LLMs, even when employing abstractive methods
for explanation generation. By employing human
evaluation, we try to overcome the difficulty of
automatically comparing abstractive explanations.

5.1 Automatic Evaluation

For evaluating explanation generation, the corre-
lation between human and automatic metrics is
generally quite low (Boissonnet et al., 2022). Nev-
ertheless, following almost all recent related work,

2https://platform.openai.com/docs/models/gpt-3-5

we still compare the generated explanation to the
gold explanation using ROUGE (Lin, 2004).

ROUGE is problematic for comparing abstrac-
tive explanations because it is based on exact
matching. Natural Language Inference (NLI) has
emerged as an alternative method (Bora-Kathariya
and Haribhakta, 2018). One advantage of this ap-
proach is that it eliminates the need for gold stan-
dard explanations. Following Gurrapu et al. (2022)
and Kotonya and Toni (2020b), we make use of
NLI models to implement reference-free metrics
for evaluating the generated text from our NLE
models. Kotonya and Toni (2020b) introduce the
following three NLI-based metrics:

Strong Global Coherence (SGC). Every sen-
tence in the explanation must entail the claim.

Weak Global Coherence (WGC). All sentences
in the explanation should either entail or maintain
a neutral relation to the claim. Thus, no sentence
in the explanation should contradict the claim.3

Local Coherence (LC). In an explanation, no
two sentences should contradict each other.

Unfortunately, the implementation of these met-
rics has not been published, and so we attempt
to reproduce them by considering the information
provided in (Kotonya and Toni, 2020b). For each
metric, we report the percentage of instances that
satisfy the specified metric.

5.2 Human Evaluation

To design our human evaluation guidelines, we
conducted three iterations of annotation and dis-
cussion involving the same two annotators The fi-
nal version of the guidelines surpasses the initial
one in detail and includes illustrative examples to
clarify expectations, leading to an improvement
in the inter-annotator agreement. Guided by these
pilot studies, a team of five annotators4 used the
guidelines to evaluate explanations, focusing on
the following seven criteria:

3In line with Kotonya and Toni (2020b), for claims origi-
nally labeled as false, the NLI labels are considered neutral if
their explanations contradict the claim, e.g. we consider the
NLI label to be neutral for the following sentence with regard
to the claim which was labeled as false originally:
Claim: Four kids who took the coronavirus vaccine died
immediately. Explanation sentence: The claim that four
children died immediately after taking the coronavirus vaccine
is false.

4All five were fluent English speakers, with two native
speakers and three with English as a second language.



Repetition of Claim. Is the claim text repeated
in the generated explanation? This (yes/no) crite-
rion captures the extent to which LLMs repeat the
language of the claim in the explanation.

Internal Repetition. Does the generated expla-
nation contain repeated information? This yes/no
criterion captures one of the common problems
with text generation models – repetition.

Suggested Class. According to the generated ex-
planation, how would you classify the claim, using
true, false, mixture and unproven labels? A gen-
erated explanation can be deemed of good quality
if, after reading the explanation, the annotator can
accurately predict the veracity of the claim.

Internal Consistency. Is the generated expla-
nation internally consistent, i.e. consistent with
itself? An explanation should be considered inter-
nally consistent if it does not include a contradic-
tion (includes two statements that contradict each
other). A Likert scale ranging from 0 to 4, where
higher scores indicate better quality, was employed.

External Consistency. Is the generated expla-
nation externally consistent, i.e. consistent with
the context? An explanation should be considered
externally consistent if it does not include a state-
ment(s) that contradicts a statement(s) in the con-
text. As with the Internal Consistency criterion, a
Likert scale from 0 to 4 was used.

Extra Information. Does the generated explana-
tion contain extra information that is not mentioned
in the claim or in the context? Given the potential
of training data leakage when working with LLMs,
particularly in in-context learning experiments, we
introduce this yes/no criterion to examine the exis-
tence of this property in generated explanations.

Missing Information. Is the generated explana-
tion missing information from the context that is
important in explaining the veracity of the claim?
This criterion allows us to verify whether the gen-
erated explanation is sufficient or if additional ex-
planation is required. A three-point scale is used.

In our study, Claim Repetition, Internal Repeti-
tion, Extra Information and Missing Information
are considered to be undesirable properties. Fig. 3
in Appendix C shows a screenshot of the annotation
tool we developed.5

5As the majority of SOTA LLMs demonstrate high fluency,
and based on our pilot studies, we chose to exclude fluency as
one of our evaluation criteria.

6 Results

We present the results of automatic as well as hu-
man evaluations. Examples of model explanations
are provided in Table 9 in Appendix 3.1.

6.1 Automatic Evaluation

The veracity prediction F1 scores for the single
and joint tasks are shown in Table 3.6 For the
few-shot setting, we individually selected the best
shot number for each model and task on the valida-
tion set. In the zero-shot setting, the closed-source
models clearly outperform the open-source models,
whereas the difference is smaller in the few-shot
setting. Fine-tuning achieves the best outcome,
particularly fine-tuning of the Mistral-7B model,
which achieves a macro-F1 of 72.0, slightly higher
than the veracity prediction macro-F1 of 70.52 re-
ported by Kotonya and Toni (2020b) on the same
dataset. In both zero-shot and few-shot scenarios,
the macro F1 for the joint task generally surpasses
that of the veracity task, except for the zero-shot
performance of GPT-3.5-D, the few-shot perfor-
mance of Falcon-180B and zero-shot and few-shot
instances of Llama-70B. In these cases, the veracity
prediction task achieves a higher macro F1 com-
pared to the joint task.

Se
tt

in
g Task Veracity Pred. Joint Task

Model M-F1 / W-F1 M-F1 / W-F1

Z
er

o-
sh

ot

GPT-3.5-D 51.7 / 67.8 50.0 / 65.9
GPT-3.5-T 51.4 / 69.3 53.9 / 70.7
GPT-4 53.2 / 69.8 53.4 / 69.6

Falcon-180B 36.6 / 59.0 44.2 / 66.6
Llama-70B 33.8 / 49.4 31.2 / 46.2
Vicuna-13B 23.2 / 24.5 47.4 / 61.4
Mistral-7B 20.5 / 25.0 41.5 / 55.5

Fe
w

-s
ho

t

GPT-3.5-D [4/1] 49.9 / 67.7 56.6 / 72.9
GPT-3.5-T [2/7] 52.9 / 70.1 54.5 / 67.5
GPT-4 [2/9] 53.0 / 69.7 54.9 / 71.5

Falcon-180B [2/1] 57.9 / 74.8 51.2 / 70.0
Llama-70B [4/4] 49.3 / 68.6 49.0 / 72.6
Vicuna-13B [6/7] 52.4 / 69.7 54.8 / 75.0
Mistral-7B [9/6] 44.9 / 67.9 51.6 / 81.8

PE
FT Vicuna-13B 68.5 / 80.5 70.0 / 81.2

Mistral-7B 72.0 / 82.5 70.1 / 82.0

Table 3: Test set performance in the veracity predic-
tion and joint tasks, in terms of macro F1 (M-F1) and
weighted F1 (W-F1). The designated shot number for
each model is specified next to the model name, with
the first corresponding to the veracity prediction task
and the second to the joint task.

6See Table 10 in Appendix C for precision/recall/accuracy.



The Rouge scores for both the single and joint
models for explanation generation are reported in
Table 4. Overall, we can observe that the Rouge
scores are higher in the few-shot settings compared
to the zero-shot setting for both tasks. The highest
scores are obtained using PEFT.

Se
tt

in
g Task Exp. Task Joint Task

Model R1 / R2 / RL R1/ R2 / RL

Z
er

o-
sh

ot

GPT-3.5-D 25 / 07 / 16 26 / 08 / 17
GPT-3.5-T 28 / 09 / 18 26 / 08 / 17
GPT-4 25 / 07 / 16 26 / 08 / 17

Falcon-180B 22 / 07 / 14 18 / 05 / 13
Llama-70B 19 / 06 / 13 23 / 07 / 16
Vicuna-13B 22 / 07 / 14 24 / 08 / 16
Mistral-7B 20 / 06 / 12 23 / 07 / 15

Fe
w

-s
ho

t

GPT-3.5-D [1/1] 25 / 07 / 16 24 / 07 / 17
GPT-3.5-T [5/7] 25 / 08 / 16 27 / 09 / 19
GPT-4 [11/9] 26 / 09 / 18 27 / 09 / 18

Falcon-180B [1/1] 19 / 05 / 12 19 / 05 / 12
Llama-70B [4/4] 24 / 09 / 18 24 / 08 / 17
Vicuna-13B [5/7] 23 / 07 / 14 26 / 08 / 17
Mistral-7B [3/6] 23 / 07 / 16 24 / 08 / 16

PE
FT Vicuna-13B 36 / 15 / 27 36 / 15 / 27

Mistral-7B 34 / 14 / 25 36 / 15 / 26

Table 4: ROUGE-1 (R1), ROUGE-2 (R2), ROUGE-L
(RL) F1 scores on the test set for generated explanations

The NLI-based coherence metrics described in
Section 5.1 are calculated using four different NLI
models, 1) a decomposable attention model (Parikh
et al., 2016), 2) a RoBERTa model trained SNLI
(Liu et al., 2019), 3) a RoBERTa model trained on
MNLI (Williams et al., 2018), and 4) a SOTA NLI
model pretrained on various NLI datasets using
RoBERTa (Nie et al., 2020). The first three models
were used by Kotonya and Toni (2020b).7 Table
5 shows the coherence metrics results on the test
using only the (Nie et al., 2020) NLI model. The
detailed results obtained using all four NLI models
are presented in Table 11 in Appendix C. As with
the Rouge score, the majority of models benefit
from moving from zero-shot to few-shot, particu-
larly Llama-70B. An exception is Falcon-180B.

In order to choose a subset of the models for our
human evaluation study, we categorize all LLMs
into five groups: zero-shot closed- and open-source,
few-shot closed- and open-source, and PEFT. We
also define a new metric for choosing the best

7Since Kotonya and Toni (2020b) have not released either
their implementation of the coherence metrics or the generated
results on the test set, a comparison is difficult.

model in each category automatically, the Selection
Score or S-Score in Table 5. In the explanation
task, the S-Score is computed as the highest mean
of RougeL F1 and WGC; in the joint task, it is
computed as the weighted mean of the macro F1
(veracity prediction), WGC, and RougeL F1, with
the respective weights of 0.5, 0.25, and 0.25.

6.2 Human Evaluation
Given that human evaluation of generated texts is
an arduous and costly process, we limit our evalua-
tions to the best LLM from each category according
to the S-Score in Table 5. That results in ten set-
tings for the five model categories across the two
tasks. The evaluation set consists of 52 instances
from the test set for each model, sampled so as
to follow the distribution of classes: 31 instances
of True, 14 of False, 4 of Mixture, and 3 of Un-
proven. In total, we assess 520 instances, with an
additional 10% overlap for agreement calculation
(resulting in 572 instances). The manual evaluation
process required around 250 hours of annotation
work. The findings reveal robust inter-annotator
agreement, particularly for Internal Repetition and
Extra Information, where we demonstrated over
94% concordance. Agreement rates exceeded 82%
across all other criteria, with the exception of Miss-
ing Information, which still exhibited a respectable
71% agreement (See Table 13 in the Appendix).

To more easily compare models for each task
according to our human evaluation protocol, we
introduce three new scores: S3, S5, and S7. The
S3 score represents the percentage of instances
satisfying the Extra Information, Missing Informa-
tion, and Suggested Class criteria. The S5 score
indicates the percentage of instances meeting both
Internal Consistency and External Consistency cri-
teria in addition to those in S3. The S7 score is the
most comprehensive score, indicating the percent-
age of instances that fulfil all seven criteria.

Table 7 shows these scores for each of the ten se-
lected models. According to the S7 metric, the few-
shot GPT-4 model emerges as the optimal choice
overall for generating high-quality explanations
in the explanation task. For the joint task, the
few-shot GPT-3.5-D and Vicuna-13B models show
promising performance. Comparing the number of
parameters in Vicuna-13B with those in GPT-3.5-
D, GPT4, or Llama-70B, the performance of the
Vicuna-13B model after parameter-efficient fine-
tuning (PEFT) is noteworthy.

We also present the results for the gold standard



Se
tt

in
g

Model Exp. Task Joint Task

SGC WGC LC S-Score SGC WGC LC S-Score

Gold Explanations - - - - 22.0 93.02 75.24 -

Z
er

o-
sh

ot

GPT-3.5-D 3.73 90.18 87.66 53.09 12.66 90.67 90.91 51.92
GPT-3.5-T 0.24 84.21 42.11 51.11 00.97 88.88 81.90 53.42
GPT-4 1.41 92.74 81.03 54.37 5.19 90.58 87.50 53.60

Falcon-180B 4.38 81.09 57.95 47.55 2.52 91.23 78.49 48.16
Llama-70B 4.00 83.75 61.77 48.38 4.06 82.73 76.29 40.28
Vicuna-13B 0.00 78.49 44.89 46.25 0.81 86.61 66.8 49.35
Mistral-7B 0.24 75.00 33.93 43.50 0.89 81.74 55.44 44.94

Fe
w

-s
ho

t

GPT-3.5-D [1/1] 2.19 89.29 84.42 52.65 28.41 93.75 98.62 55.99
GPT-3.5-T [5/7] 2.52 90.02 79.87 53.01 15.99 91.40 93.99 54.85
GPT-4 [11/9] 15.26 90.58 82.63 54.29 13.64 91.31 89.04 54.78

Falcon-180B [1/1] 0.00 80.60 43.02 46.80 0.08 82.39 44.81 48.20
Llama-70B [4/4] 30.35 94.27 81.11 56.14 20.54 88.64 64.37 48.41
Vicuna-13B [5/7] 0.97 78.73 43.51 46.37 7.39 85.96 70.86 50.64
Mistral-7B [3/6] 8.85 87.18 71.27 51.59 7.06 83.77 45.37 48.24

PE
FT Vicuna-13B 30.52 93.99 75.57 60.50 25.00 92.69 73.54 64.94

Mistral-7B 23.13 93.18 75.89 59.09 26.70 92.21 76.70 64.61

Table 5: NLI-based coherence metrics on the test set for explanation generation and the joint task using the (Nie
et al., 2020) NLI model.

explanation (last row in Table 7). Interestingly,
most of the LLMs perform notably better than the
gold standard, suggesting that human generated
abstractive explanations are not always of good
quality. Considering the low scores of the gold ex-
planations, it is perhaps unsurprising that few-shot
scenarios outperform PEFT in generating explana-
tions for both tasks.

There are a few possible reasons for the lower
scores of gold explanations from the PUBHEALTH
dataset. Firstly, all claims and related context, ve-
racity labels and explanations were collected au-
tomatically from different fact-checking websites
and the PUBHEALTH authors mapped almost 100
labels into four labels (True, False, Mixture, and
Unproven). While fact-checking websites gener-
ally share a common definition for fact-checking
labels, there can still be slight differences. Map-
ping all labels into four categories could certainly
introduce ambiguity. The gold explanations exhibit
a notable MAE of 50% for the Extra Information
criterion, whereas the worst performing models for
the same criterion introduce extra information in
38% of their generated explanations. This suggests
that in real-world scenarios, journalists assess each
claim using multiple, diverse sources, sometimes
relying on their own knowledge, rather than solely
relying on the provided article or context. More-

over, automatic instance crawling can inevitably
introduce some noise into the dataset.

Tables 15 and 17 (see Appendix) report the error
rate per criterion, model-wise breakdown and re-
sults per class. The correlations between automated
metrics and human-evaluated explanation quality
remain consistently weak, corroborating previous
findings (Luo et al., 2021) – see Table 14.

Analysis. After conducting a comprehensive
manual inspection of over 250 explanations, along
with their manually annotated scores according to
our evaluation criteria, we conclude that no sin-
gle criterion can definitively determine the supe-
riority of one model over another. For instance,
the zero-shot GPT-4 model performs exceptionally
well in generating high-quality explanations, if the
Suggested Class criterion is considered (F1 score
of 78.79). However, it is noteworthy that models
may achieve high accuracy by merely repeating the
claim without offering substantial explanations (see
the generated explanation of few-shot Llama-70B
for the explanation task in Table 6 as an example).
Additionally, the zero-shot GPT-4 model also ex-
hibits the highest Claim Repetition and Internal
Repetition scores at 44.23% and 17.31%. We there-
fore advocate for a comprehensive approach which
considers all criteria simultaneously (S7), while



Example 1

Claim: The Obama administration shut down the Amber Alert program because of the government shutdown.
Summarized Context: The claim that the Obama administration shut down the Amber Alert program due to the government
shutdown is false. The Amber Alert system is not run by the federal government, but rather by individual states and
coordinated through the National Center for Missing and Exploited Children, a private nonprofit organization. The federal
webpage promoting the program was temporarily closed due to the government shutdown, but this did not affect the operation
of the program itself. The Amber Alert system continued to operate during the shutdown, with alerts being sent out in Texas
and Florida. The federal webpage was restored to eliminate confusion among the public, but it was purely informational
and did not impact the functioning of the program. The Amber Alert system is activated by local or state law enforcement
officials when they have specific details about a missing child, such as their name, photo, and information about the suspect
or vehicle involved. The system relies on media and cell phone notifications to spread the word and has been successful in
locating missing children in the past. The federal webpage has never been involved in the actual process of finding missing
children. Overall, the claim that the Obama administration shut down the Amber Alert program is false and based on a
misunderstanding of how the system operates.

GPT4 (zero-shot) Explanation Task

The claim is false because the Amber Alert system was not shut down during the government shutdown. The system is run
by individual states and coordinated through a private nonprofit organization, not the federal government. The shutdown
only affected the federal webpage promoting the program, not the actual operation of the Amber Alert program. Alerts were
still sent out in different states during the shutdown. The federal webpage was purely informational and does not impact the
functioning of the program. Thus, the claim that the Obama administration shut down the Amber Alert program because of
the government shutdown is not accurate.

Llama-70B ( Zero-shot) Explanation Task

The claim that the Obama administration shut down the Amber Alert program is false because the Amber Alert system is not
run by the federal government, but rather by individual states and coordinated through a private nonprofit organization. The
federal webpage promoting the program was temporarily closed due to the government shutdown, but this did not affect
the operation of the program itself. The Amber Alert system continued to operate during the shutdown, with alerts being
sent out in Texas and Florida. The federal webpage was restored to eliminate confusion among the public, but it was purely
informational and did not impact the functioning of the program. The Amber Alert system is activated by local or state law
enforcement officials when they have specific details about a missing child, such as their name, photo, and information about
the suspect or vehicle involved. The system relies on media and cell phone notifications to spread the word and has been
successful in locating missing children in the past. The federal webpage has never been involved in the actual process of
finding missing children. Overall, the claim that the Obama administration shut down the Amber Alert program is false and
based on a misunderstanding of how the system operates.

GPT4 (few-shot) Explanation Task

The US federal shutdown did not shut down the amber alert system, despite incorrect reports to the contrary. The official
US government amber alert website, which promotes the program and educates the public about amber alerts, was taken
offline, but this did not affect the functioning of the amber alert system itself. Amber alerts are actually organized, activated,
and issued at the state and local level, and they continued to be issued during the shutdown. Amber Alerts are emergency
messages that are broadcast when a law enforcement agency determines that a child has been abducted and is in imminent
danger. They are broadcast via radio, television, road signs, cell phones, and other data-enabled devices. While it’s important
to note that the federal website is not the amber alert system. The federal website promotes the program and issues guidelines,
but it has no active role in issuing amber alerts. While it’s also correct to observe that funding for the amber alert program
comes from a mixture of federal, state, and local resources. The office of justice programs, which oversees the amber alert
program, is not paid directly by the federal government. Instead, its funding flows from the Department of Justice to state
and local partners. Therefore, even during a federal shutdown, essential public safety programs such as the amber alert
program would continue to operate.

Llama-70B (few-shot) Explanation Task

The Amber Alert program was not shut down during the government shutdown.

Table 6: GPT-4 and Llama explanations (explanation task only) See Table 9 in Appendix C for more model outputs
for this example, and for more examples. Claim repetition, internal repetition, or copy context as explanation



Setting Model S3 S5 S7
E

xp
la

na
tio

n Zero-shot
GPT-4 76.92 73.08 36.54
Llama-70B 65.38 65.38 23.08

Few-shot
GPT-4 42.31 42.31 38.46
Llama-70B 32.69 32.69 25.00

PEFT Vicuna-13B 36.54 36.54 25.00

Jo
in

t

Zero-shot
GPT-4 59.62 57.69 38.46
Vicuna-13B 55.77 51.92 25.00

Few-shot
GPT-3.5-D 51.92 51.92 48.08
Vicuna-13B 67.31 67.31 48.08

PEFT Vicuna-13B 42.31 42.31 40.38

Gold Exp. 25.00 25.00 19.23

Table 7: Human evaluation results: S3 denotes the per-
centage of instances meeting Extra Information, Miss-
ing Information, and Suggested Class criteria; S5 in-
dicates the percentage of instances fulfilling Internal
Consistency and External Consistency criteria in addi-
tion to those in S3; and S7 represents the percentage of
instances meeting all seven criteria.

also reporting S3 and S5 as more lenient metrics.
In the explanation task, models attempt to sum-

marize the context as the explanation. We believe
this behavior stems from the task’s nature, where
we provide the veracity label of the claim along
with the claim and context, and inquire about the
reasons behind the veracity label. In contrast, in
the joint task, we solely input the claim and con-
text, prompting the models to predict the veracity
label and provide reasons for their prediction. Con-
sequently, the explanations generated in the joint
task exhibit higher realism and quality compared
to those in the explanation task. Models appear to
seek relevant information from the context to gen-
erate the rationale behind their predictions. This
explains the improvement observed across all crite-
ria, except for Suggested Class8 when comparing
the results of models in the joint task to their coun-
terparts in the explanation task. Furthermore, in
the joint task, models generally produce shorter
yet more accurate explanations compared to the ex-
planation task. This observation is consistent with
the average number of generated words across all
models and test set instances – 94 words for the
joint task and 123 words for the explanation task.

According to the relaxed scores (S3 and S5) in
Table 7, zero-shot models outperform few-shot
models, especially in the explanation task. For

8The lack of improvement here is reasonable as we do not
provide the gold veracity label as input.

instance, in the explanation task, the zero-shot sce-
nario of Llama-70B performs better than its few-
shot counterpart. This discrepancy arises because
the relaxed scores overlook the Claim Repetition
and Internal Repetition criteria. In the zero-shot
scenario, especially for open-source LLMs, some
instances involve the model simply duplicating the
context or claim without providing meaningful ex-
planations, or just regenerating/predicting the ve-
racity label of the claim beside the claim without
any explanation. Consequently, the relaxed scores
of these models in the zero-shot scenario are higher
than in the few-shot scenario, because Claim Repe-
tition and Internal Repetition do not contribute to
the scores. However, when considering the perfect
score (S7), we observe the opposite trend, with
few-shot outperforming zero-shot.

Another noteworthy observation is that some
models encounter difficulties in providing explana-
tions for instances with Unproven claim veracity
labels, generating unrelated text that is relevant
neither to the claim nor the context (see the third
example in Table 9 in Appendix C). Furthermore,
after reviewing the confusion matrix for each model
(see Table 16 in Appendix C), we observe instances
where models misclassify the True, False, and Mix-
ture classes as Unproven. This occurs when models
either introduce information not present in the con-
text or overlook crucial information in the context
(Figure 4 illustrates the heatmap depicting the cor-
relation between various evaluation criteria).

7 Conclusions

We have presented a set of novel explainable
fact-checking experiments with closed- and open-
source LLMs in a variety of settings, offering valu-
able insights into LLMs’ performance in claim ver-
ification and explanation within the public health
domain, A second contribution of this paper is the
human evaluation of the generated explanations
and a novel set of evaluation guidelines. As well as
highlighting differences between the models, the
human evaluation reveals some issues with the gold
explanations in the PUBHEALTH dataset.

8 Limitations

We note the following limitations:

1. Fine-tuning of Llama-70B and Falcon-180B
was not possible due to computational budget
limitations. This means that our fine-tuning



was restricted to the Mistral-7B and Vicuna-
13B models.

2. Our experiments were focused on the English
language and the public health domain.

3. We have conducted a human evaluation with
five annotators, 10 models, and 52 samples for
each model, totaling 520 instances manually
inspected. This required much effort (around
250 hours) but there is always room for more
qualitative analysis.
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opened-source LLMs. As a result, we employed a
range of prompts for each task on a small subset
and manually assessed the results. Subsequently,
we selected the most promising prompt and fur-
ther refined it using the https://claude.ai engine to
enhance its effectiveness. The final experimented
prompts for closed-source LLMs are mentioned in
the section 3, and the final experimented prompts
for opened-source LLMs are as follows:

Veracity Prediction: ### Instruction:\nUse
the Task below and the Input given to
write the Response, which is a veracity
label prediction that can solve the
Task. \n \n### Task:\nBased only on
the context, categorize the claim as:
\nTrue (supported by context) \n False
(contradicted by context) \nMixture
(partially supported/contradicted)
\nUnproven (not enough info) \nOnly
generate a single word as response. \n
\n### Input:\nContext: X \nClaim: Y \n
\n### Response: \n

Explanation Generation: ###
Instruction:\nUse the Task below and
the Input given to write the Response,
which is an explanation generation
that can solve the Task. \n \n###
Task:\nUsing only the context provided,
explain why the claim veracity is Z.\n
\n### Input:\nContext: X \nClaim: Y \n
The claim veracity: Z \n \n### Response:
\n

Joint Task: ### Instruction:\nUse the
Task below and the Input given to write
the Response, which is a veracity label
prediction and the reason explanation
for your prediction that can solve the
Task. \n \n### Task:\nBased only on
the context, categorize the claim as:
\nTrue (supported by context) \n False
(contradicted by context) \nMixture
(partially supported/contradicted)
\nUnproven (not enough info) \nAnd
explain your reasoning. Provide the
response in JSON format with the
following keys: veracity, explanation.
\n \n### Input:\nContext: X \nClaim: Y
\n \n### Response: \n

In this context, X, Y, and Z represent the contex-
tual content, claim text, and the veracity label of
the claim, respectively

1.1.2 Few-shot Tuning

To determine the optimal number of shots, we ran-
domly selected a subset of 100 samples from the
dev set, considering class frequency. We conducted
experiments covering a range of numbers, from
1-shot to 12-shot (excluding cases where the max
sequence length of the LLMs was exceeded), for
all three tasks using this subset. This process was
repeated three times with three subsets for open-
source LLMs for considering potential noises and
variances. However, to minimize costs for closed-
source LLMs, we only performed these experi-
ments with one subset. In the veracity task, we
computed the variance and the mean of macro F1
for each shot number based on the results from
three rounds. The one with the highest mean and
the lowest variance was selected as the best shot
number.

In the explanation task, we selected the shot num-
ber based on the highest mean of RougeL F1 and
WGC, prioritizing those with low variance across
three rounds. Finally, in the joint task, we defined
a selection score by calculating the mean of macro
F1, WGC, and RougeL F1. By using the verac-
ity section of the results, we assigned fifty per-
cent weight to the mean of macro F1 in the selec-
tion score. Simultaneously, the other fifty percent
weight in the selection score was given to the mean
of RougeL F1 and WGC from the explanation sec-
tion of the results. Then, the shot number with
the highest selection score and lowest variance was
selected as the best shot.

1.2 Setting Details

We conducted zero-shot and few-shot experiments
with default hyperparameter values for all selected
LLMs. Due to resource constraints, we quantized
the Falcon-180B model to 8 bits for our in-context
learning experiments. For closed-source LLMs, we
set the max new tokens to 3 for the veracity task and
300 for the explanation and joint tasks. For open-
source LLMs, we adjusted the max new tokens to
5, 348, and 360 for the veracity, explanation, and
joint tasks, respectively.

We conducted parameter-efficient fine-tuning us-
ing Vicuna-13B and Mistral-7B models utilizing 4-
bit quantization. Our fine-tuning process employed
the AdamW (paged_adamw_32bit) optimizer with
a learning rate of 2e-4, and we fine-tuned our mod-
els with various hyperparameter values, selecting
the optimal values based on performance on the



Task Model epochs lora_dropout seq. length

Veracity Vicuna-13B 10 0.45 830

Mistral-7B 12 0.50 830

Explanation Vicuna-13B 10 0.50 1700

Mistral-7B 10 0.50 1700

Joint Vicuna-13B 15 0.55 1700

Mistral-7B 15 0.55 1700

Table 8: Hyper-parameter settings for each model and
task. seq. length refers to the maximum sequence length
for models.

validation set. For QLoRA settings, we determined
the best values for r and alpha to be 16. Addition-
ally, we configured bias and task_type as none and
CAUSAL_LM, respectively, following the default
settings of QLoRA. Refer to Table 8 for a compre-
hensive overview of other hyperparameter settings
for each model and task.

B Summarization Details

2.1 Prompts

Firstly, we examined the number of words in ar-
ticles in the PUHEALTH dataset (Figure 2). The
mean and median word counts across all sets are ap-
proximately 700 and 600 words, respectively. Con-
sequently, we tested the length of the summary out-
put with 250 words and 350 words. We randomly
selected 14 examples from the PUBHEALTH train
set, each featuring varying base word counts, span-
ning from 600 to 1600 words. After examining
this subset manually, we chose to limit the sum-
mary output to 350 words. This is because longer
summaries contain additional details, ensuring we
will not overlook any essential information from
the article content regarding the claim for the next
steps. Indeed, we utilize the summarized article
content and the claim to predict the veracity of the
claim and generate an explanation for the veracity
prediction. In addition, we did not summarize ar-
ticles that consist of less than 350 tokens, which
resulted in skipping 1,262 samples of the whole
PUBHEALTH dataset.

Secondly, we tested various prompts as follows
to ask the LLM to summarize the text. We selected
prompt number seven after manually comparing
the results of all prompts on the selected subset.

1. Your task is to generate a summary
of a news article for use in
claim verification. Summarize the

(a) The number of words in the main text in the train set

(b) The number of words in the main text in the validation set

(c) The number of words in the main text in the test set

Figure 2: The number of words in the main text in
different sets of PUBHEALTH dataset

news article below, focusing on any
aspects that are relevant to the claim
below. Both claim and news article
are delimited by triple backticks.
Limit to [250, 350] words. claim: :
“‘[]“‘ news article: “‘[]“‘

2. Your task is to generate a summary
of a news article for use in
claim verification. Summarize the
news article below, focusing on any
aspects that are relevant to the claim
below. Limit to [250, 350] words.
claim: : “‘[]“‘ news article: “‘[]“‘

3. Your task is to generate a summary
of a news article for use in claim
verification. Summarize the article
below, focusing on any aspects that



are relevant to the claim below.
Limit to 350 words. Do not assess the
veracity of the claim. Do not explain
the veracity of the claim. claim: :
“‘[]“‘ news article: “‘[]“‘

4. Your task is to generate a summary
of an article. Summarize the article
below, focusing on any aspects that
are relevant to the claim below.
Limit to 350 words. Do not assess the
veracity of the claim. Do not explain
the veracity of the claim. claim: :
“‘[]“‘ news article: “‘[]“‘

5. Your task is to summarize an article.
Extract all important information
from the article below, focusing on
any aspects that are relevant to the
claim below. Limit to 350 words.
claim: : “‘[]“‘ news article: “‘[]“‘

6. Your task is to extract all important
information from an article. Extract
all important information from the
article below, focusing on any
aspects that are relevant to the claim
below. Limit to 350 words. Do not
assess the veracity of the claim. Do
not explain the veracity of the claim.
claim: : “‘[]“‘ article: “‘[]“‘

7. Your task is to summarize an article.
Extract all important information
from the article below, focusing on
any aspects that are relevant to the
claim below. Limit to 350 words.
claim: : “‘[]“‘ article: “‘[]“‘

We removed the phrase "for use in claim verifica-
tion" from the prompt because, in our perspective,
this phrase could introduce ambiguity to the LLM.
Including it might prompt the LLM to assess or ex-
plain the claim’s veracity rather than concentrating
on summarizing the article. After checking the re-
sult of the experiments with and without extra rules
(Do not assess the veracity of the claim. Do not
explain the veracity of the claim.), We chose not
to implement these rules because, despite the lack
of significant differences in the results, the prompt
without additional rules was shorter and led to cost
savings.

2.2 Evaluation
In order to analyze the quality of our summariza-
tion process and pick the best model and setting,
we evaluated output summaries in the sampled sub-
set manually. Each summary output was evaluated
based on three criteria: coherence, relevance, and
missing information. For the first two criteria, we
follow Fabbri et al. (2021) guidelines. We also
consider our definition for the last criterion in the
human evaluation of summaries.

Coherence: The summary must demonstrate a
clear and organized structure. It should not merely
present a collection of related details but instead
progress logically from one sentence to another,
forming a cohesive body of information extracted
from the article text specifically pertaining to the
related claim.

Relevance: The summary should encompass
solely crucial information extracted from the article
text, directly relevant to the claim.

Missing information: Is the generated summary
missing essential information from the article text
crucial for evaluating or explaining the claim’s ve-
racity?

In the end, we chose gpt-3.5-turbo as the sum-
marizer model. This decision was made using the
seventh prompt, requesting a 350-word output sum-
mary, and setting the temperature to zero.

C Results

3.1 Examples of Generated Explanations
In Table 9 we present instances of generated expla-
nations produced by various models.



Figure 3: A screenshot of our annotation tool.



Example 1

Claim: The Obama administration shut down the Amber Alert program because of the government shutdown.
Summarized Context: The claim that the Obama administration shut down the Amber Alert program due to the government
shutdown is false. The Amber Alert system is not run by the federal government, but rather by individual states and
coordinated through the National Center for Missing and Exploited Children, a private nonprofit organization. The federal
webpage promoting the program was temporarily closed due to the government shutdown, but this did not affect the operation
of the program itself. The Amber Alert system continued to operate during the shutdown, with alerts being sent out in Texas
and Florida. The federal webpage was restored to eliminate confusion among the public, but it was purely informational
and did not impact the functioning of the program. The Amber Alert system is activated by local or state law enforcement
officials when they have specific details about a missing child, such as their name, photo, and information about the suspect
or vehicle involved. The system relies on media and cell phone notifications to spread the word and has been successful in
locating missing children in the past. The federal webpage has never been involved in the actual process of finding missing
children. Overall, the claim that the Obama administration shut down the Amber Alert program is false and based on a
misunderstanding of how the system operates.

GPT4 (zero-shot) Explanation Task

The claim is false because the Amber Alert system was not shut down during the government shutdown. The system is run
by individual states and coordinated through a private nonprofit organization, not the federal government. The shutdown
only affected the federal webpage promoting the program, not the actual operation of the Amber Alert program. Alerts were
still sent out in different states during the shutdown. The federal webpage was purely informational and does not impact the
functioning of the program. Thus, the claim that the Obama administration shut down the Amber Alert program because of
the government shutdown is not accurate.

Llama-70B ( Zero-shot) Explanation Task

The claim that the Obama administration shut down the Amber Alert program is false because the Amber Alert system is not
run by the federal government, but rather by individual states and coordinated through a private nonprofit organization. The
federal webpage promoting the program was temporarily closed due to the government shutdown, but this did not affect
the operation of the program itself. The Amber Alert system continued to operate during the shutdown, with alerts being
sent out in Texas and Florida. The federal webpage was restored to eliminate confusion among the public, but it was purely
informational and did not impact the functioning of the program. The Amber Alert system is activated by local or state law
enforcement officials when they have specific details about a missing child, such as their name, photo, and information about
the suspect or vehicle involved. The system relies on media and cell phone notifications to spread the word and has been
successful in locating missing children in the past. The federal webpage has never been involved in the actual process of
finding missing children. Overall, the claim that the Obama administration shut down the Amber Alert program is false and
based on a misunderstanding of how the system operates.

GPT4 (few-shot) Explanation Task

The US federal shutdown did not shut down the amber alert system, despite incorrect reports to the contrary. The official
US government amber alert website, which promotes the program and educates the public about amber alerts, was taken
offline, but this did not affect the functioning of the amber alert system itself. Amber alerts are actually organized, activated,
and issued at the state and local level, and they continued to be issued during the shutdown. Amber Alerts are emergency
messages that are broadcast when a law enforcement agency determines that a child has been abducted and is in imminent
danger. They are broadcast via radio, television, road signs, cell phones, and other data-enabled devices. While it’s important
to note that the federal website is not the amber alert system. The federal website promotes the program and issues guidelines,
but it has no active role in issuing amber alerts. While it’s also correct to observe that funding for the amber alert program
comes from a mixture of federal, state, and local resources. The office of justice programs, which oversees the amber alert
program, is not paid directly by the federal government. Instead, its funding flows from the Department of Justice to state
and local partners. Therefore, even during a federal shutdown, essential public safety programs such as the amber alert
program would continue to operate.

Llama-70B (few-shot) Explanation Task

The Amber Alert program was not shut down during the government shutdown.

Vicuna-13B (PEFT) Explanation Task

The Obama administration shut down the Amber Alert program because of the government shutdown.

GPT4 (zero-shot) Joint Task

The context contradicts the claim that the Obama administration shut down the Amber Alert program because of the
government shutdown. According to the context, the Amber Alert system is operated by individual states and coordinated
through a private nonprofit organization. Although the federal webpage promoting the program was temporarily closed due
to the government shutdown, the Amber Alert program itself continued its operation. Thus, the claim is not supported by the
context and is labeled as false.

(a) Part 1: Example explanations.



Vicuna-13B (zero-shot) Joint Task

The claim that the Obama administration shut down the Amber Alert program due to the government shutdown is false.
The Amber Alert system is not run by the federal government, but rather by individual states and coordinated through the
National Center for Missing and Exploited Children, a private nonprofit organization. The federal webpage promoting the
program was temporarily closed due to the government shutdown, but this did not affect the operation of the program itself.
The Amber Alert system continued to operate during the shutdown, with alerts being sent out in Texas and Florida. The
federal webpage was restored to eliminate confusion among the public, but it was purely informational and did not impact
the functioning of the program. The Amber Alert system is activated by local or state law enforcement officials when they
have specific details about a missing child, such as their name, photo, and information about the suspect or vehicle involved.
The system relies on media and cell phone notifications to spread the word and has been successful in locating missing
children in the past. The federal webpage has never been involved in the actual process of finding missing children. Overall,
the claim that the Obama administration shut down the Amber Alert program is false and based on a misunderstanding of
how the system operates.

GPT-3.5-D (few-shot) Joint Task

Federal government shutdown did not affect the functioning of the Amber Alert system, which is coordinated through a
private nonprofit organization

Vicuna-13B (few-shot) Joint Task

The Amber Alert system is run by individual states and coordinated through the National Center for Missing and Exploited
Children, a private nonprofit organization. The federal government shutdown did not affect the operation of the program,
which continued to function during the shutdown. The federal government’s webpage promoting the program was temporarily
closed, but this did not impact the program’s operation. The claim that the Obama administration shut down the Amber Alert
program is false.

Vicuna-13B (PEFT) Joint Task

What’s true: The federal government’s website promoting the Amber Alert system was down during the government
shutdown. What’s false: The Amber Alert system is not run by the federal government, but by individual states and
coordinated through a private nonprofit. The government shutdown had no effect on the Amber Alert system. The ""Share
Your Renewal Act"" is unrelated to the Amber Alert system.

Gold Explanation

People on Twitter, bloggers and others said the Obama administration shut down the Amber Alert system. Actually, each
state has its own alert system, and national coordination takes place through the National Center for Missing and Exploited
Children, a private nonprofit, untouched by the federal stalemate. The system has continued to operate through the federal
shutdown, sending out alerts in Texas and Florida. The one sliver of truth that triggered this claim is that a federal webpage
promoting the program was closed, but that did not affect the program itself. It is a mistake to confuse that web page with
the Amber Alert system.

Example 2

Claim: United States health care facilities face an intravenous bag shortage because of the devastation wreaked by Hurricane
Maria in September 2017.
Summarized Context: The article discusses the shortage of intravenous (IV) bags in both Puerto Rico and the mainland
United States as a result of the damage caused by Hurricane Maria in September 2017. The tweet from Ben Boyer criticizing
the Trump administration’s response to the disaster brought attention to this issue. The shortage of IV bags is due to the fact
that many medical manufacturing plants, including Baxter International, the largest IV bag supplier in the US, are located in
Puerto Rico and were affected by the hurricane. The Food and Drug Administration (FDA) has been working closely with
industry and officials to address the shortage of IV saline and other products. The FDA expects the shortage of IV fluids to
improve in early 2018 based on information from the manufacturers. Baxter International confirmed that its facilities in
Puerto Rico are connected to the local electrical grid and expects to return to normal supply levels for products made in
Puerto Rico in the coming weeks. However, Baxter clarified that its Puerto Rican operations did not include the manufacture
of saline IV solutions, and production of those products continues to run normally. The FDA Commissioner, Scott Gottlieb,
stated that addressing the IV saline shortage is a key area of focus and expects the situation to improve early this year. The
article also mentions that the number of deaths caused by Hurricane Maria remains unclear, with conflicting reports and a
recount of the death toll ordered by the Governor of Puerto Rico. The shortage of IV bags has affected healthcare facilities
in the United States, leading to challenges in administering necessary treatments. Boyer’s tweet brought attention to this
issue, and the story gained traction on social media, with many nurses and medical professionals sharing their experiences
with the shortage. In summary, the article highlights the shortage of IV bags in the United States due to the damage caused
by Hurricane Maria in Puerto Rico. The FDA and manufacturers are working to address the shortage, and improvements
are expected in early 2018. The shortage has impacted healthcare facilities and patients, leading to challenges in providing
necessary treatments.

(b) Part 2: Example explanations.



GPT4 (zero-shot) Explanation Task

The context verifies the claim as true due to several reasons. It explains how Hurricane Maria in 2017 caused damage
to Puerto Rico, where many medical manufacturing plants, including those from Baxter International (the largest IV bag
supplier in the U.S), are situated. This damage led to a shortage of IV bags both in Puerto Rico and mainland United
States. The FDA and manufacturers, including Baxter, are working to address this shortage, suggesting that it has had
significant effects on healthcare facilities, which is also supported by various personal accounts shared on social media.
However, the impact extends beyond the shortage of IV bags, as the disaster has caused challenges in administering necessary
treatments. Consequently, the claim that U.S healthcare facilities are facing an IV bag shortage due to the devastation caused
by Hurricane Maria is true based on the provided context.

Llama-70B (zero-shot) Explanation Task

The claim that United States health care facilities face an intravenous bag shortage because of the devastation wreaked by
Hurricane Maria in September 2017 is true. The article states that the shortage of intravenous (IV) bags in both Puerto
Rico and the mainland United States is a result of the damage caused by Hurricane Maria in September 2017. The shortage
of IV bags is due to the fact that many medical manufacturing plants, including Baxter International, the largest IV bag
supplier in the US, are located in Puerto Rico and were affected by the hurricane. The Food and Drug Administration (FDA)
has been working closely with industry and officials to address the shortage of IV saline and other products. The FDA
expects the shortage of IV fluids to improve in early 2018 based on information from the manufacturers. Baxter International
confirmed that its facilities in Puerto Rico are connected to the local electrical grid and expects to return to normal supply
levels for products made in Puerto Rico in the coming weeks. However, Baxter clarified that its Puerto Rican operations did
not include the manufacture of saline IV solutions, and production of those products continues to run normally. The FDA
Commissioner, Scott Gottlieb, stated that addressing the IV saline shortage is a key area of focus and expects the situation to
improve early this year. The shortage of IV bags has affected healthcare facilities in the United States, leading to challenges
in administering necessary treatments. In summary, the shortage of IV bags in the (Incomplete explanation)

GPT4 (few-shot) Explanation Task

A months-long IV bag shortage might become a life-or-death situation for thousands of Americans and is almost certainly
impeding care at Seattle Children’s Hospital, among other pediatric care facilities around the country, according to reports
from health-care professionals. One of the reports was a post from former television executive Ben Boyer that went viral last
week. His tweet shows an IV bag on a pole and was captioned: “My wife’s nurse had to stand for 30 mins & administer
a drug slowly through a syringe because there are almost no IV bags in the continental U.S. anymore. Out of PR Belt
[Pharms] makes them. And we’re using [Puerto Rico’s] only other natural resource to ship supplies: people.” Boyer’s wife
was identified by several news outlets as Xenocrates Boyer, an experienced Hollywood set designer who has worked on
productions as varied as Scandal, Dexter, and American Pie. Ben Boyer is a co-executive producer of the FX series You’re
the Worst. Baxter International’s website lists heparin and potassium chloride as two drugs it manufacturers in IV solution
form. Earlier this month, Bloomberg reported that millions of gallons of intravenous solutions were available but inaccessible
because federal agencies were wrestling with how to get the fluids off the island and onto the mainland. Baxter says on its
website that several of its Puerto Rican manufacturing locations were damaged in the hurricane and the company is having to
air-freight products from less storm-torn areas to fill the (Incomplete explanation)

Llama-70B (few-shot) Explanation Task

This story explains that a shortage of IV bags in both Puerto Rico and the mainland United States is due to the damage
caused by Hurricane Maria in September 2017. The story does a good job of explaining that the shortage is due to the fact
that many medical manufacturing plants, including Baxter International, the largest IV bag supplier in the United States, are
located in Puerto Rico and were affected by the hurricane. The story also includes a quote from the FDA Commissioner,
Scott Gottlieb, who stated that addressing the IV saline shortage is a key area of focus and expects the situation to improve
early this year.

Vicuna-13B (PEFT) Explanation Task

Because of Hurricane Maria, the United States is facing a shortage of intravenous (IV) bags.

GPT4 (zero-shot) Joint Task

The context supports the claim that United States health care facilities face an intravenous bag shortage as a result of the
damage caused by Hurricane Maria in Puerto Rico in September 2017. The context mentions that the leading IV bag supplier
in the US, Baxter International, has operations in Puerto Rico and these were affected by the hurricane. The disruption
contributed to a shortage of IV bags, which has impacted health care provision in the United States. The Food and Drug
Administration (FDA) is working with manufacturers to try and alleviate the shortage.

Vicuna-13B (zero-shot) Joint Task

The claim is true as the article discusses the shortage of intravenous (IV) bags in both Puerto Rico and the mainland United
States as a result of the damage caused by Hurricane Maria in September 2017. The shortage of IV bags is due to the fact
that many medical manufacturing plants, including Baxter International, the largest IV bag supplier in the US, are located in
Puerto Rico and were affected by the hurricane.

GPT-3.5-D (few-shot) Joint Task

The article states that the shortage of IV bags is due to the damage caused by Hurricane Maria in Puerto Rico, with healthcare
facilities facing challenges in providing treatments.

(c) Part 3: Example explanations.



Vicuna-13B (few-shot) Joint Task

The article discusses the shortage of IV bags in the United States due to the damage caused by Hurricane Maria in Puerto
Rico. The FDA and manufacturers are working to address the shortage, and improvements are expected in early 2018. The
shortage has impacted healthcare facilities and patients, leading to challenges in providing necessary treatments.

Vicuna-13B (PEFT) Joint Task

We contacted Baxter International to ask about the status of its IV bag production in Puerto Rico, but have not yet received a
response. However, the FDA has been working with Baxter and other manufacturers to address the shortage, and expects the
situation to improve in early 2018.

Gold Explanation

Most of the people who have contacted him since his remark began spreading online, he said, have offered similar stories.

Example 3

Claim: The new supplement InteliGEN can boost brain function.
Summarized Context: The article provided does not contain any information about the claim regarding the supplement
InteliGEN and its ability to boost brain function. Therefore, it is not possible to summarize the article in relation to the claim.

Vicuna-13B (PEFT) Explanation Task

A 7.5 magnitude earthquake struck off the coast of Indonesia, killing at least 91 people, injuring hundreds and damaging
hundreds of buildings, including the country’s biggest mosque.

Vicuna-13B (PEFT) Joint Task

Aid groups in South Africa’s Gauteng province are struggling to contain an outbreak of measles among refugees, highlighting
the vulnerability of migrants who often live in crowded conditions and have little access to healthcare.

Gold Explanation

Tens of thousands of holiday makers fled seaside towns on Australia’s east coast on Thursday as bushfires approached, and
military ships and helicopters began rescuing thousands more trapped by the blazes.

(d) Part 4: Example explanations.

Table 9: The generated explanations of different LLMs. Claim repetition, internal repetition, or copy context as
explanation. Extra Information. External Inconsistency. During the human evaluation of gold explanations, we
assess the criteria of Extra Information, External Consistency, and Missing Information with respect to the original
context, not the summarized context. For the third example, we only include models that struggle with unproven
claims, generating irrelevant text as explanation, while excluding models that produce acceptable explanations.



Se
tt

in
g

Model
Veracity Task / Joint Task

Macro Weighted Acc.

Pr. Rc. F1. Pr. Rc. F1.

Majority 12.2 25.0 16.4 23.6 48.6 31.8 48.6

Z
er

o-
sh

ot

GPT-3.5-D 54.1 / 52.2 55.6 / 54.0 51.7 / 50.0 75.1 / 73.6 63.8 / 61.4 67.8 / 65.9 63.8 / 61.4
GPT-3.5-T 56.0 / 53.3 52.6 / 55.6 51.4 / 53.9 76.5 / 76.0 66.80 / 67.8 69.3 / 70.7 66.80 / 67.8
GPT-4 54.3 / 54.3 55.4 / 55.8 53.2 / 53.4 73.4 / 73.3 67.5 / 67.3 69.8 / 69.6 67.5/ 67.3

Falcon-180B 59.6 / 63.4 39.9 / 47.1 36.6 / 44.2 70.9 / 73.5 66.7 / 73.9 59.0 / 66.6 66.7 / 73.9
Llama-70B 43.9 / 34.0 37.2 / 34.0 33.8 / 31.2 58.0 / 50.0 53.2 / 49.1 49.4 / 46.2 53.2 / 49.1
Vicuna-13B 57.0 / 57.8 34.6 / 49.6 23.2 / 47.4 70.7 / 75.8 29.5 / 58.0 24.5 / 61.4 29.5 / 58.0
Mistral-7B 51.4 / 46.7 28.5 / 46.0 20.5 / 41.5 72.9 / 68.1 25.7 / 49.8 25.0 / 55.5 25.7 / 49.8

Fe
w

-s
ho

t

GPT-3.5-D [4/1] 50.6 / 57.0 51.2 / 56.7 49.9 / 56.6 68.0 / 73.7 68.3 / 72.3 67.7 / 72.9 68.3 / 72.3
GPT-3.5-T [2/7] 54.5 / 55.7 53.7 / 55.3 52.9 / 54.5 74.6 / 67.3 67.8 / 69.8 70.1 / 67.5 67.8 / 69.8
GPT-4 [2/9] 54.9 / 55.5 56.1 / 56.9 53.0 / 54.9 75.0 / 74.1 66.2 / 70.0 69.7 / 71.5 66.2 / 70.0

Falcon-180B [2/1] 57.7 / 54.8 58.9 / 52.3 57.9 / 51.2 75.6 / 73.3 74.0 / 68.8 74.8 / 70.0 74.0 / 68.8
Llama-70B [4/4] 52.5 / 50.8 52.0 / 53.2 49.3 / 49.0 71.1 / 76.6 68.8 / 70.3 68.6 / 72.6 68.8 / 70.3
Vicuna-13B [6/7] 52.2 / 55.8 53.8 / 56.0 52.4 / 54.8 72.0 / 76.6 68.1 / 74.1 69.7 / 75.0 68.1 / 74.1
Mistral-7B [9/6] 59.5 / 51.9 48.8 / 64.1 44.9 / 51.6 75.2 / 89.5 73.6 / 76.5 67.9 / 81.8 73.6 / 76.5

PE
FT Vicuna-13B 69.7 / 71.6 67.8 / 68.9 68.5 / 70.0 80.9 / 81.3 80.4 / 81.2 80.5 / 81.2 80.4 / 81.2

Mistral-7B 75.5 / 74.2 70.3 / 68.4 72.0 / 70.1 82.9 / 82.6 82.3 / 81.8 82.5 / 82.0 82.3 / 81.8

Table 10: Veracity prediction results on the test set. The models’ performance is evaluated using precision (Pr.),
recall (Rc.), F1, and accuracy (Acc.) metrics.



Setting

Model Evaluation Method Explanation Task Joint Task

SGC WGC LC SGC WGC LC

Gold Explanations

DA+ELMO:SNLI - - - 25.0 82.79 63.31
RoBERTa:SNLI - - - 22.32 78.17 57.87
RoBERTa:MNLI - - - 22.24 90.83 70.29
Roberta-L:(S+M+A)NLI-FEVER - - - 22.0 93.02 75.24

Z
ero-shot

GPT-3.5-D

DA+ELMO:SNLI 9.5 75.32 46.43 19.24 81.41 63.39
RoBERTa:SNLI 3.57 72.89 40.18 13.31 76.87 59.25
RoBERTa:MNLI 2.92 87.99 80.03 11.61 87.74 89.2
Roberta-L:(S+M+A)NLI-FEVER 3.73 90.18 87.66 12.66 90.67 90.91

GPT-3.5-T

DA+ELMO:SNLI 2.52 66.96 10.63 2.6 66.88 27.84
RoBERTa:SNLI 0.08 57.95 12.99 1.06 59.01 29.22
RoBERTa:MNLI 0.24 83.6 55.36 1.22 86.04 78.25
Roberta-L:(S+M+A)NLI-FEVER 0.24 84.21 42.11 0.97 88.88 81.9

GPT-4

DA+ELMO:SNLI 4.95 72.16 29.95 8.12 75.24 40.75
RoBERTa:SNLI 1.70 68.26 28.98 5.28 70.45 42.53
RoBERTa:MNLI 2.03 87.42 71.75 5.11 88.8 83.6
Roberta-L:(S+M+A)NLI-FEVER 1.41 92.74 81.03 5.19 90.58 87.5

Falcon-180B

DA+ELMO:SNLI 7.79 64.61 23.86 5.6 64.61 52.35
RoBERTa:SNLI 4.79 57.71 21.67 3.17 65.34 51.95
RoBERTa:MNLI 4.46 77.6 50.49 2.6 89.37 75.41
Roberta-L:(S+M+A)NLI-FEVER 4.38 81.09 57.95 2.52 91.23 78.49

Llama-70B

DA+ELMO:SNLI 9.12 69.59 29.11 7.71 73.33 29.21
RoBERTa:SNLI 4.43 62.29 26.59 4.83 65.28 25.99
RoBERTa:MNLI 4.17 81.06 56.99 3.98 79.93 70.87
Roberta-L:(S+M+A)NLI-FEVER 4.0 83.75 61.77 4.06 82.73 76.29

Vicuna-13B

DA+ELMO:SNLI 1.54 59.01 6.57 2.52 65.75 24.11
RoBERTa:SNLI 0.0 50.65 4.3 1.06 60.8 23.54
RoBERTa:MNLI 0.0 74.59 34.25 0.81 81.9 61.61
Roberta-L:(S+M+A)NLI-FEVER 0.0 78.49 44.89 0.81 86.61 66.8

Mistral-7B

DA+ELMO:SNLI 1.79 57.55 6.49 2.92 61.69 13.96
RoBERTa:SNLI 0.24 50.41 4.87 01.06 53.17 15.18
RoBERTa:MNLI 0.24 70.94 27.52 0.89 78.33 49.84
Roberta-L:(S+M+A)NLI-FEVER 0.24 75.0 33.93 0.89 81.74 55.44

Few
-shot

GPT-3.5-D [1/1]

DA+ELMO:SNLI 7.63 73.54 38.23 36.93 90.34 94.89
RoBERTa:SNLI 2.27 67.05 33.2 29.14 91.15 92.53
RoBERTa:MNLI 1.95 86.44 81.33 27.92 92.86 97.4
Roberta-L:(S+M+A)NLI-FEVER 2.19 89.29 84.42 28.41 93.75 98.62

GPT-3.5-T [5/7]

DA+ELMO:SNLI 7.63 74.11 29.87 22.89 84.5 67.13
RoBERTa:SNLI 2.68 70.62 29.71 16.72 81.98 64.12
RoBERTa:MNLI 2.84 88.88 73.94 15.91 90.34 91.64
Roberta-L:(S+M+A)NLI-FEVER 2.52 90.02 79.87 15.99 91.4 93.99

GPT-4 [11/9]

DA+ELMO:SNLI 19.89 79.22 60.55 18.02 81.09 59.74
RoBERTa:SNLI 14.77 76.54 57.31 13.23 77.76 55.93
RoBERTa:MNLI 14.2 89.04 78.25 13.31 88.56 84.66
Roberta-L:(S+M+A)NLI-FEVER 15.26 90.58 82.63 13.64 91.31 89.04

Falcon-180B [1/1]

DA+ELMO:SNLI 00.24 53.98 13.47 00.57 56.01 18.18
RoBERTa:SNLI 00.00 49.19 09.09 00.08 45.94 12.58
RoBERTa:MNLI 00.00 81.33 32.79 00.08 80.84 37.74
Roberta-L:(S+M+A)NLI-FEVER 00.00 80.84 39.45 00.08 81.17 44.56

Table 11: The NLI-based coherence metrics on the test set for explanation generation and the joint task using
different NLI models (part one).



Setting

Model Evaluation Method Explanation Task Joint Task

SGC WGC LC SGC WGC LC

Few
-shot

Llama-70B [4/4]

DA+ELMO:SNLI 33.22 82.63 68.38 21.51 72.16 42.86
RoBERTa:SNLI 31.45 82.04 65.35 20.78 66.72 37.5
RoBERTa:MNLI 30.44 92.5 78.84 20.62 87.34 57.63
Roberta-L:(S+M+A)NLI-FEVER 30.35 94.27 81.11 20.54 88.64 64.37

Vicuna-13B [5/7]

DA+ELMO:SNLI 2.27 59.09 9.74 11.77 71.27 34.33
RoBERTa:SNLI 1.3 49.27 6.74 7.87 66.31 30.44
RoBERTa:MNLI 0.97 75.57 36.12 7.87 81.57 61.28
Roberta-L:(S+M+A)NLI-FEVER 0.97 78.73 43.51 7.39 85.96 70.86

Mistral-7B [3/6]

DA+ELMO:SNLI 13.64 74.35 47.16 7.87 63.96 18.59
RoBERTa:SNLI 9.01 68.43 43.75 7.14 56.49 16.15
RoBERTa:MNLI 8.36 84.58 65.99 7.14 79.3 37.66
Roberta-L:(S+M+A)NLI-FEVER 8.85 87.18 71.27 7.06 83.77 45.37

PE
FT

Vicuna-13B

DA+ELMO:SNLI 32.63 85.63 68.34 27.35 84.33 64.04
RoBERTa:SNLI 31.09 82.06 63.39 25.49 79.79 60.47
RoBERTa:MNLI 30.60 92.45 72.65 23.86 91.48 70.70
Roberta-L:(S+M+A)NLI-FEVER 30.52 93.99 75.57 25.00 92.69 73.54

Mistral-7B

DA+ELMO:SNLI 26.79 85.06 67.29 30.28 85.55 67.94
RoBERTa:SNLI 22.89 79.06 61.53 27.84 81.66 63.64
RoBERTa:MNLI 23.13 91.15 72.40 27.19 91.88 73.78
Roberta-L:(S+M+A)NLI-FEVER 23.13 93.18 75.89 26.7 92.21 76.7

Table 12: The NLI-based coherence metrics on the test set for explanation generation and the joint task using
different NLI models (part two).

C. Rep. I. Rep. S. class F1 I. Cons. E. Cons. Extra Missing

0.82 0.96 0.84 0.88 0.82 0.94 0.71

Table 13: Agreement percentages across various criteria in the human evaluation process.

C. Rep. I. Rep. S. class F1 I. Cons. E. Cons. Extra Missing S3 S5 S7

SGC 0.111 -0.093 0.047 -0.074 -0.119 -0.007 -0.137 -0.077 -0.075 -0.064
WGC 0.032 0.009 -0.067 0.014 0.025 0.01 0.02 0.060 0.055 0.20

LC 0.069 0.038 0.017 -0.004 -0.075 0.001 -0.13 0.003 -0.006 -0.027
R1 0.17 0.03 -0.088 0.086 0.166 0.039 0.189 0.078 0.097 -0.036
R2 0.177 -0.014 -0.139 0.082 0.116 0.028 0.132 0.098 0.120 -0.007
RL 0.236 0.012 -0.133 0.098 0.132 0.007 0.133 0.121 0.138 -0.043

(a) Explanation

C. Rep. I. Rep. S. class F1 I. Cons. E. Cons. Extra Missing S3 S5 S7

SGC 0.142 -0.05 -0.019 0.014 0.013 0.021 0.025 0.089 0.090 -0.016
WGC -0.041 -0.041 -0.105 -0.042 -0.052 0.059 -0.076 0.091 0.084 0.055

LC -0.052 -0.049 0.223 -0.027 -0.041 0.05 -0.013 -0.035 -0.034 -0.010
R1 0.154 -0.033 -0.019 -0.013 0.003 -0.049 0.044 0.040 0.049 -0.011
R2 0.199 -0.048 -0.054 -0.052 0.024 -0.067 0.057 0.017 0.029 -0.069
RL 0.168 -0.079 -0.02 -0.019 0.041 -0.053 0.012 0.053 0.062 -0.014

(b) Joint

Table 14: Correlations between automated metrics and results of the human evaluation. The correlations remained
consistently weak, confirming the results of previous work (Luo et al., 2021).



Setting Model C. Rep. I. Rep. S. class F1 I. Cons. E. Cons. Extra Missing S3 S5 S7

E
xp

la
na

tio
n Zero-shot

GPT-4 44.23 17.31 78.79 00.19 00.21 03.85 00.12 76.92 73.08 36.54
Llama-70B 44.23 17.31 77.13 00.31 00.37 03.85 00.42 65.38 65.38 23.08

Few-shot
GPT-4 05.77 01.92 56.75 00.04 00.40 38.46 00.56 42.31 42.31 38.46
Llama-70B 30.77 01.92 45.68 00.04 00.31 05.77 00.96 32.69 32.69 25.0

PEFT Vicuna-13B 23.08 09.62 50.61 00.04 00.25 25.00 00.63 36.54 36.54 25.0

Jo
in

t

Zero-shot
GPT-4 32.69 03.85 53.03 00.04 00.06 03.85 00.08 59.62 57.69 38.46
Vicuna-13B 38.46 11.54 48.73 00.17 00.12 03.85 00.06 55.77 51.92 25.0

Few-shot
GPT-3.5-D 03.85 00.00 50.52 00.00 00.06 00.00 00.46 51.92 51.92 48.08
Vicuna-13B 19.23 03.85 58.25 00.04 00.00 00.00 00.21 67.31 67.31 48.08

PEFT Vicuna-13B 09.62 07.69 64.59 00.00 00.19 36.54 00.38 42.31 42.31 40.38

Gold Exp. 07.69 00.00 41.72 00.08 00.17 50.00 00.48 25.00 25.00 19.23

Table 15: Human evaluation results for the 10 selected models: C. Rep. represents the percentage error of Claim
Repetition, I. Rep. signifies the percentage error of Internal Repetition, S. Class F1 denotes the Suggested Class F1,
I. Cons. stands for the mean absolute error of Internal Consistency, E. Cons. indicates the mean absolute error of
External Consistency, Extra represents the percentage error of Extra Information, and Missing denotes the mean
absolute error of Missing Information.



Prediction

Setting Model True False Mixture Unproven

E
xp

la
na

tio
n

Zero-shot

GPT-4

Tr
ut

h

True 31 0 0 0
False 0 11 1 2

Mixture 1 0 3 0
Unproven 0 1 0 2

Llama-70B
Tr

ut
h

True 28 0 0 3
False 0 10 0 4

Mixture 1 0 3 0
Unproven 0 0 0 3

Few-shot

GPT-4

Tr
ut

h

True 26 0 1 4
False 1 8 4 1

Mixture 1 0 1 2
Unproven 0 0 0 3

Llama-70B

Tr
ut

h

True 24 0 1 6
False 2 7 2 3

Mixture 3 0 1 0
Unproven 1 1 0 1

PEFT Vicuna-13B

Tr
ut

h

True 27 0 2 2
False 2 6 2 4

Mixture 1 0 2 1
Unproven 1 1 0 1

Jo
in

t

Zero-shot

GPT-4

Tr
ut

h

True 22 0 6 3
False 0 10 3 1

Mixture 1 0 1 2
Unproven 0 1 0 2

Vicuna-13B

Tr
ut

h

True 22 2 5 2
False 1 6 7 0

Mixture 1 0 3 0
Unproven 0 2 0 1

Few-shot

GPT-3.5-D

Tr
ut

h

True 27 0 2 2
False 2 9 2 1

Mixture 2 0 0 2
Unproven 0 1 0 2

Vicuna-13B

Tr
ut

h

True 27 1 2 1
False 0 11 2 1

Mixture 1 1 0 2
Unproven 0 0 0 3

PEFT Vicuna-13B

Tr
ut

h

True 25 0 4 2
False 1 9 4 0

Mixture 1 0 3 0
Unproven 0 1 0 2

Table 16: Confusion matrices for the suggested class criterion of the human evaluation.



Setting Model Class C. Rep. I. Rep. S. class F1 I. Cons. E. Cons. Extra Missing S3 S5 S7

E
xp

la
na

tio
n

Zero-shot

GPT-4

All 44.23 17.31 78.79 00.19 00.21 03.85 00.12 76.92 73.08 36.54
True 45.16 16.13 100.0 00.13 00.16 06.45 00.06 87.1 80.65 41.94
False 50.00 14.29 88.00 00.14 00.21 00.00 00.07 71.43 71.43 35.71
Mixture 50.00 25.00 85.71 00.50 00.75 00.00 00.50 50.0 50.0 0.0
Unproven 00.00 33.33 80.00 00.67 00.00 00.00 00.33 33.33 33.33 33.33

Llama-70B

All 44.23 17.31 77.13 00.31 00.37 03.85 00.42 65.38 65.38 23.08
True 45.16 09.68 94.92 00.26 00.45 06.45 00.39 74.19 74.19 32.26
False 42.86 28.57 83.33 00.57 00.36 00.00 00.50 57.14 57.14 14.29
Mixture 25.00 25.00 85.71 00.00 00.00 00.00 00.25 50.0 50.0 0.0
Unproven 66.67 33.33 100.0 00.00 00.00 00.00 00.67 33.33 33.33 0.0

Few-shot

GPT-4

All 05.77 01.92 56.75 00.04 00.40 38.46 00.56 42.31 42.31 38.46
True 00.00 03.23 91.23 00.00 00.39 41.94 00.61 45.16 45.16 45.16
False 14.29 00.00 72.73 00.07 00.43 28.57 00.57 42.86 42.86 35.71
Mixture 00.00 00.00 40.00 00.00 00.00 25.00 00.00 25.0 25.0 25.0
Unproven 33.33 00.00 100.0 00.33 01.00 66.67 00.67 33.33 33.33 0.0

Llama-70B

All 30.77 01.92 45.68 00.04 00.31 05.77 00.96 32.69 32.69 25.0
True 25.81 03.23 87.27 00.00 00.13 06.45 01.03 35.48 35.48 29.03
False 50.00 00.00 66.67 00.07 00.29 07.14 00.71 35.71 35.71 21.43
Mixture 00.00 00.00 40.00 00.00 00.00 00.00 00.50 25.0 25.0 25.0
Unproven 33.33 00.00 50.00 0.33 02.67 00.00 02.00 0.0 0.0 0.0

PEFT Vicuna-13B

All 23.08 09.62 50.61 00.04 00.25 25.00 00.63 36.54 36.54 25.0
True 16.13 09.68 93.10 00.00 00.10 29.03 00.48 45.16 45.16 35.48
False 42.86 07.14 60.00 00.14 00.71 21.43 00.79 28.57 28.57 14.29
Mixture 00.00 25.00 66.67 00.00 00.00 00.00 00.75 25.0 25.0 0.0
Unproven 33.33 00.00 50.00 00.00 00.00 33.33 01.33 0.0 0.0 0.0

Jo
in

t

Zero-shot

GPT-4

All 32.69 03.85 53.03 00.04 00.06 03.85 00.08 59.62 57.69 38.46
True 32.26 03.23 83.02 00.00 00.06 03.23 00.06 61.29 61.29 41.94
False 35.71 07.14 83.33 00.07 00.00 07.14 00.00 71.43 71.43 42.86
Mixture 25.00 00.00 40.00 00.00 00.00 00.00 00.00 25.0 25.0 25.0
Unproven 33.33 00.00 80.00 00.33 00.33 00.00 00.67 33.33 0.0 0.0

Vicuna-13B

All 38.46 11.54 48.73 00.17 00.12 03.85 00.06 55.77 51.92 25.0
True 35.48 09.68 83.02 00.10 00.13 06.45 00.03 64.52 61.29 25.81
False 50.00 14.29 60.00 00.43 00.14 00.00 00.07 42.86 35.71 21.43
Mixture 00.00 00.00 85.71 00.00 00.00 00.00 00.25 50.0 50.0 50.0
Unproven 66.67 33.33 50.0 00.00 00.00 00.00 00.00 33.33 33.33 0.0

Few-shot

GPT-3.5-D

All 03.85 00.00 50.52 00.00 00.06 00.00 00.46 51.92 51.92 48.08
True 06.45 00.00 93.10 00.00 00.10 00.00 00.35 61.29 61.29 54.84
False 00.00 00.00 78.26 00.00 00.00 00.00 00.50 50.0 50.0 50.0
Mixture 00.00 00.00 00.00 00.00 00.00 00.00 01.00 0.0 0.0 0.0
Unproven 00.00 00.00 80.00 00.00 00.00 00.00 00.67 33.33 33.33 33.33

Vicuna-13B

All 19.23 03.85 58.25 00.04 00.00 00.00 00.21 67.31 67.31 48.08
True 12.90 03.23 93.10 00.03 00.00 00.00 00.23 74.19 74.19 61.29
False 42.86 07.14 88.00 00.07 00.00 00.00 00.21 71.43 71.43 28.57
Mixture 00.00 00.00 00.00 00.00 00.00 00.00 00.00 0.0 0.0 0.0
Unproven 00.00 00.00 100.0 00.00 00.00 00.00 00.33 66.67 66.67 66.67

PEFT Vicuna-13B

All 09.62 07.69 64.59 00.00 00.19 36.54 00.38 42.31 42.31 40.38
True 12.90 06.45 89.29 00.00 00.06 45.16 00.35 45.16 45.16 41.94
False 07.14 07.14 78.26 00.00 00.36 21.43 00.36 42.86 42.86 42.86
Mixture 00.00 25.00 85.71 00.00 00.25 25.00 00.50 25.0 25.0 25.0
Unproven 00.00 00.00 80.00 00.00 00.67 33.33 00.67 33.33 33.33 33.33

Gold Exp.

All 07.69 00.00 41.72 00.08 00.17 50.00 00.48 25.00 25.00 19.23
True 06.45 00.00 89.29 00.00 00.03 64.52 00.32 25.81 25.81 19.35
False 14.29 00.00 52.63 00.00 00.14 35.71 00.57 28.57 28.57 21.43
Mixture 00.00 00.00 40.00 00.00 00.50 25.00 00.50 25.00 25.00 25.00
Unproven 00.00 00.00 50.00 01.33 01.33 00.00 01.67 00.00 00.00 00.00

Table 17: Comprehensive human evaluation results for the best models, categorized by class: C. Rep. is Claim
Repetition, I. Rep is Internal Repetition, S. Class F1 is the Suggested Class F1, I. Cons. is Internal Consistency, E.
Cons. is External Consistency, Extra is Extra Information and Missing is Missing Information.
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Zero-shot GPT-4 (E) - 0.21 0.00∗ 0.00∗ 0.00∗ 0.04∗ 0.01∗ 0.00∗ 0.30 0.00∗ 0.00∗

Zero-shot Llama-70B (E) 0.21 - 0.03∗ 0.00∗ 0.01∗ 0.63 0.36 0.19 1.00 0.03∗ 0.00∗

Few-shot GPT-4 (E) 0.00∗ 0.03∗ - 0.39 0.62 0.10 0.21 0.40 0.01∗ 1.00 0.06
Few-shot Llama-70B (E) 0.00∗ 0.00∗ 0.39 - 0.82 0.01∗ 0.01∗ 0.02∗ 0.00∗ 0.44 0.51
PEFT Vicuna-13B (E) 0.00∗ 0.01∗ 0.62 0.82 - 0.02∗ 0.05∗ 0.12 0.00∗ 0.66 0.28
Zero-shot GPT-4 (J) 0.04∗ 0.63 0.10 0.01∗ 0.02∗ - 0.82 0.49 0.49 0.11 0.00∗

Zero-shot Vicuna-13B (J) 0.01∗ 0.36 0.21 0.01∗ 0.05∗ 0.82 - 0.80 0.27 0.25 0.00∗

Few-shot GPT-3.5-D (J) 0.00∗ 0.19 0.40 0.02∗ 0.12 0.49 0.80 - 0.11 0.40 0.01∗

Few-shot Vicuna-13B (J) 0.30 1.00 0.01∗ 0.00∗ 0.00∗ 0.49 0.27 0.11 - 0.02∗ 0.00∗

PEFT Vicuna-13B (J) 0.00∗ 0.03∗ 1.00 0.44 0.66 0.11 0.25 0.40 0.02∗ - 0.06
Gold Explanation 0.00∗ 0.00∗ 0.06 0.51 0.28 0.00∗ 0.00∗ 0.01∗ 0.00∗ 0.06 -

(a) S3

Zero-shot GPT-4 (E) - 0.48 0.00∗ 0.00∗ 0.00∗ 0.10 0.02∗ 0.01∗ 0.63 0.00∗ 0.00∗

Zero-shot Llama-70B (E) 0.48 - 0.03∗ 0.00∗ 0.01∗ 0.46 0.17 0.19 1.00 0.03∗ 0.00∗

Few-shot GPT-4 (E) 0.00∗ 0.03∗ - 0.39 0.62 0.15 0.41 0.40 0.01∗ 1.00 0.06
Few-shot Llama-70B (E) 0.00∗ 0.00∗ 0.39 - 0.82 0.01∗ 0.03∗ 0.02∗ 0.00∗ 0.44 0.51
PEFT Vicuna-13B (E) 0.00∗ 0.01∗ 0.62 0.82 - 0.03∗ 0.13 0.12 0.00∗ 0.66 0.28
Zero-shot GPT-4 (J) 0.10 0.46 0.15 0.01∗ 0.03∗ - 0.67 0.65 0.37 0.15 0.00∗

Zero-shot Vicuna-13B (J) 0.02∗ 0.17 0.41 0.03∗ 0.13 0.67 - 1.00 0.14 0.47 0.00∗

Few-shot GPT-3.5-D (J) 0.01∗ 0.19 0.40 0.02∗ 0.12 0.65 1.00 - 0.11 0.40 0.01∗

Few-shot Vicuna-13B (J) 0.63 1.00 0.01∗ 0.00∗ 0.00∗ 0.37 0.14 0.11 - 0.02∗ 0.00∗

PEFT Vicuna-13B (J) 0.00∗ 0.03∗ 1.00 0.44 0.66 0.15 0.47 0.40 0.02∗ - 0.06
Gold Explanation 0.00∗ 0.00∗ 0.06 0.51 0.28 0.00∗ 0.00∗ 0.01∗ 0.00∗ 0.06 -

(b) S5

Zero-shot GPT-4 (E) - 0.14 1.00 0.31 0.31 1.00 0.28 0.26 0.33 0.81 0.06
Zero-shot Llama-70B (E) 0.14 - 0.15 1.00 1.00 0.12 1.00 0.01∗ 0.02∗ 0.09 0.81
Few-shot GPT-4 (E) 1.00 0.15 - 0.16 0.11 1.00 0.19 0.42 0.38 1.00 0.04∗

Few-shot Llama-70B (E) 0.31 1.00 0.16 - 1.00 0.22 1.00 0.01∗ 0.02∗ 0.16 0.60
PEFT Vicuna-13B (E) 0.31 1.00 0.11 1.00 - 0.15 1.00 0.02∗ 0.00∗ 0.12 0.63
Zero-shot GPT-4 (J) 1.00 0.12 1.00 0.22 0.15 - 0.19 0.41 0.47 1.00 0.05
Zero-shot Vicuna-13B (J) 0.28 1.00 0.19 1.00 1.00 0.19 - 0.02∗ 0.03∗ 0.15 0.63
Few-shot GPT-3.5-D (J) 0.26 0.01∗ 0.42 0.01∗ 0.02∗ 0.41 0.02∗ - 1.00 0.55 0.00∗

Few-shot Vicuna-13B (J) 0.33 0.02∗ 0.38 0.02∗ 0.00∗ 0.47 0.03∗ 1.00 - 0.53 0.01∗

PEFT Vicuna-13B (J) 0.81 0.09 1.00 0.16 0.12 1.00 0.15 0.55 0.53 - 0.02∗

Gold Explanation 0.06 0.81 0.04∗ 0.60 0.63 0.05 0.63 0.00∗ 0.01∗ 0.02∗ -

(c) S7

Table 18: Results of a paired two-sided randomization test (10’000 rounds) on the human evaluation results with
α = 0.05. The upper half indicates p-values for different human evaluation criteria. Parentheses in model names
indicate the task, where (E) stands for an explanation only model and (J) for a joint model.



(a) Explanation (b) Joint

Figure 4: The correlation between different human evaluation metrics for each task.
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