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Abstract

Current natural language processing (NLP) re-
search tends to focus on only one or, less fre-
quently, two dimensions – e.g., performance,
privacy, fairness, or efficiency – at a time,
which may lead to suboptimal conclusions and
often overlooking the broader goal of achiev-
ing trustworthy NLP. Work on adapter modules
(Houlsby et al., 2019; Hu et al., 2021) focuses
on improving performance and efficiency, with
no investigation of unintended consequences
on other aspects such as fairness. To address
this gap, we conduct experiments on three text
classification datasets by either (1) finetuning
all parameters or (2) using adapter modules.
Regarding performance and efficiency, we con-
firm prior findings that the accuracy of adapter-
enhanced models is roughly on par with that
of fully finetuned models, while training time
is substantially reduced. Regarding fairness,
we show that adapter modules result in mixed
fairness across sensitive groups. Further inves-
tigation reveals that, when the standard fine-
tuned model exhibits limited biases, adapter
modules typically do not introduce extra bias.
On the other hand, when the finetuned model
exhibits increased bias, the impact of adapter
modules on bias becomes more unpredictable,
introducing the risk of significantly magnifying
these biases for certain groups. Our findings
highlight the need for a case-by-case evaluation
rather than a one-size-fits-all judgment.1

1 Introduction

Experiments in NLP often focus on the fundamen-
tal goal of optimizing models for performance but
overlook other dimensions, such as fairness, pri-
vacy, or efficiency. Ruder et al. (2022) have termed
this the SQUARE ONE experimental setup. While
modern NLP research has started to go beyond
SQUARE ONE, it commonly remains solely focused

1Code is available at https://github.com/
MinhDucBui/adapters-vs-fairness.

Pe
rf

or
m

an
ce

(S
QU
AR
E
ON
E)

Ef
fic

ie
nc

y
Fa

ir
ne

ss

BERT (Devlin et al., 2019) ✓
RoBERTa (Liu et al., 2019) ✓
GPT-2 (Radford et al., 2019) ✓
Adapters (Houlsby et al., 2019) ✓ ✓
LoRA (Hu et al., 2021) ✓ ✓
Our Research (This Paper) ✓ ✓ ✓

Table 1: A checkmark (✓) indicates that the correspond-
ing dimension was considered in this study. We shed
light on the intersection of efficiency and fairness by
examining the impact of adapter modules on model
fairness. For a more comprehensive analysis of recent
research, we refer to Ruder et al. (2022).

on two aspects – often performance in addition to
enhancing model efficiency –, while neglecting the
broader context of multi-dimensional challenges.
This oversight often hinders progress towards the
goal of trustworthy NLP, potentially leading to sub-
optimal choices: e.g. recent studies have raised
concerns about model compression methods com-
promising fairness (Hansen and Søgaard, 2021;
Ahn et al., 2022; Hessenthaler et al., 2022; Ramesh
et al., 2023).

Adapter modules (Houlsby et al., 2019; Hu et al.,
2021) have emerged as a promising technique to
finetune pretrained language models (LMs) on
downstream tasks, increasing efficiency with re-
spect to memory and training time, while roughly
maintaining performance, see Table 1.

We emphasize the importance of fairness for two
practical tasks: occupation classification, where we
determine a person’s occupation based on their bi-
ography, and toxic text detection. These tasks have
significant real-world implications, ranging from
automating online recruitment to addressing the
growing need for text toxicity detectors as online
harassment is on the rise (Vogels, 2021). Our goal
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is to evaluate how two types of adapter modules –
adapters and LoRA – affect the biases that models
display in these tasks. In our context, bias refers
to systematic disparities in outcomes experienced
by certain groups of people, which leads to unfair
systems. We experiment on three datasets: Jigsaw
(Jigsaw, 2019), HateXplain (Mathew et al., 2022)
and the BIOS dataset (De-Arteaga et al., 2019). We
experiment with four LMs: BERT (Devlin et al.,
2019), GPT-2 (Radford et al., 2019), RoBERTabase
and RoBERTalarge (Liu et al., 2019). They remain
relevant for our tasks due to their resource-efficient
nature, particularly when compared to large LMs.

The performance of adapter modules is compara-
ble to that of fully finetuned models, while strongly
reducing training time. In terms of fairness, our ex-
periments demonstrate that adapter modules result
in mixed fairness across sensitive groups. Upon
closer investigation, when the finetuned model ex-
hibits limited biases, adapter modules usually do
not add extra bias. However, in cases of preexisting
high bias, the impact of adapter modules on bias
becomes highly variable, rendering it more unpre-
dictable and posing the risk of amplifying these
biases. Our findings underscore the importance of
assessing each situation individually rather than
relying on a one-size-fits-all judgment.

2 Related Work

Efficiency vs. Fairness While many parameter-
efficient methods have been recognized for their
sustainability benefits, a comprehensive explo-
ration of their implications on fairness is missing
(Ruder et al., 2022). However, recent studies have
highlighted that such methods can have unintended
side-effects on fairness: e.g., knowledge distillation
(Hinton et al., 2015) has been shown to be problem-
atic in that regard (Ahn et al., 2022; Hessenthaler
et al., 2022; Ramesh et al., 2023). Additionally,
Hansen and Søgaard (2021) show that weight prun-
ing, another common technique for model compres-
sion, has disparate effects on performance across
different demographics. However, no clear state-
ment can be made regarding the fairness of LMs
with respect to their size (Baldini et al., 2022; Tal
et al., 2022). Renduchintala et al. (2021) observe
that techniques aimed at making inference more ef-
ficient – e.g., quantization – have a small impact on
performance improvements but dramatically am-
plify gender bias. For a comprehensive overview
of fairness in the NLP domain, we refer to Blodgett

et al. (2020); Delobelle et al. (2022).

Adapter Modules Adapter modules are a
lightweight training strategy for pretrained trans-
formers which enable us to retain the integrity of
pretrained model parameters while finetuning only
a limited number of newly introduced parameters,
either for new tasks (Houlsby et al., 2019; Stick-
land and Murray, 2019; Pfeiffer et al., 2021; Hu
et al., 2021), or for novel domains (Bapna et al.,
2019). Notably, they deliver performance levels
that are either on par with or slightly below those
achieved through full finetuning (Pfeiffer et al.,
2021; Hu et al., 2021), while being up to ∼60%
faster in training for certain settings (Rücklé et al.,
2021). Furthermore, adapters can be leveraged for
debiasing or detoxifying strategies by finetuning
on counterfactual or nontoxic corpora, eliminating
the need for training an entire model from scratch
(Lauscher et al., 2021; Kumar et al., 2023; Wang
et al., 2022). However, a critical aspect that has re-
mained largely unexplored is the impact of adapter
modules on fairness when directly employed in
the finetuning of LMs for downstream tasks. This
raises the question of whether the benefits in terms
of model efficiency come at the expense of fairness
considerations, as is the case with other efficiency
methods (Hessenthaler et al., 2022; Hansen and
Søgaard, 2021; Renduchintala et al., 2021). We
focus on two popular adapter modules: adapters
(Houlsby et al., 2019) and LoRA (Hu et al., 2021).

3 Experiment

3.1 Experimental Setup

Models We experiment with four base LMs:
BERTbase, GPT-2, RoBERTabase and RoBERTalarge
with 109 Million (M), 124M and 124M and 355M
parameters, respectively. To insert adapters, we
adopt the adapter architecture and placement out-
lined by Pfeiffer et al. (2021) and use a default
reduction factor of 16, if not otherwise specified.
For LoRA, we adopt the approach introduced by
(Hu et al., 2021) and apply LoRa exclusively to the
query and value projection matrices within the self-
attention module. In the case of GPT-2, we extend
this to include the key projection matrix as well.
We set the default rank to 16 for all matrices. We
train each model architecture with 5 random seeds
and average the resulting metrics for robustness.
See Appendix A.2 for more information about the
training and hyperparameter tuning.



Figure 1: We display our main results on Jigsaw, HateXplain and BIOS dataset. We plot the difference to the base
variant. The color of the plane indicates an improvement (green) or degradation (red). Exact numerical values with
standard deviation can be found in the Appendix, see Table 5 and Table 6.

Dataset We evaluate toxic text detection using
the Jigsaw (Jigsaw, 2019) and HateXplain datasets
(Mathew et al., 2022). The Jigsaw dataset con-
sists of approximately 2 million public comments,
while HateXplain includes around 20,000 tweets
and tweet-like samples. Both datasets allow us to
create a binary toxic label, and they provide de-
tailed annotations related to mentions of identity
groups. Following Baldini et al. (2022), our anal-
ysis focuses on broad sensitive groups: religion,
race, and gender.2

For the occupation task, we utilize the BIOS
dataset (De-Arteaga et al., 2019), which comprises
around 400,000 biographies labeled with 28 profes-
sions and gender information. We categorize the
professions into three groups based on the percent-
age of female individuals working in each occupa-
tion within the training set. Further details about
the sizes of training, development, and test sets as
well as information on creating general categories
and labels can be found in Appendix A.1.

Evaluation Metrics For the toxic text datasets,
which have a substantial class imbalance, we rely
on balanced accuracy. This metric calculates the
average of recall scores for both negative and pos-
itive classes. We further compute equalized odds

2A more descriptive name would be gender & sexuality.

(EO; Hardt et al., 2016) as a measure of group fair-
ness. Intuitively, EO is fulfilled when the model
predictions are independent of the sensitive at-
tribute conditioned on the label. We quantify EO
by considering the maximum difference between
true positive and false positive rates for sensitive
and complementary groups.

For occupation classification, we use accuracy
as our performance metric. To assess fairness, we
measure gender bias by calculating the true posi-
tive rate (TPR) gender gap, following De-Arteaga
et al. (2019); Ravfogel et al. (2020). This gap is
the difference in TPRs between genders for each
occupation: we calculate the root mean squared
value across all TPRs (TPRGap).

3.2 Results

Our main results are shown in Figure 1.

Performance With an average decrease of
less than 1% for almost all models across all
tasks, adapters and LoRA exhibit only a mi-
nor reduction in performance, confirming prior
works. The biggest decrease we see is approx.
1.7% for RoBERTa+LoRA on Jigsaw, while, for
RoBERTa+Adapters on BIOS, we even see a small
increase in performance.



Efficiency As we use a reduction factor of 16 in
adapters and rank 16 for LoRA, we only introduce
less than 1% to the total model parameter budget,
see Appendix A.3 for a more detailed analysis on
model parameter count. During training, we only
finetune the new parameters and the classifier head.
This leads to a significant speed advantage of ap-
prox. 30% per epoch on average. This speedup is
comparable to prior findings (Rücklé et al., 2021).

Fairness Turning to fairness on Jigsaw, we ob-
serve that adapter modules tends to slightly de-
crease EO across most models and adapter mod-
ules. The most pronounced disparity is observed
in the case of GPT-2+LoRA, with a difference of
2.7% on race. Notably, we observe improvements
when using GPT-2 for the sensitive group gender,
as well as RoBERTabase+Adapters for race.

On HateXplain, we see a steady fairness de-
crease on religion, with the highest decrease for
RoBERTalarge+LoRA and RoBERTalarge+Adapters:
4.9% and 3.6% on religion, respectively. This im-
plies that adapters and LoRA can have a detrimen-
tal effect on fairness in certain cases. However, it is
essential to recognize that this pattern is not univer-
sal across all identity groups. On race and gender,
we see an increase. Although improvements are
subtle, with the most significant margin by far be-
ing 4.7% in the case of RoBERTabase+LoRA on
race, they underscore the mixed impact of adapter
modules across different sensitive groups.

On BIOS, we see a strong decrease in fairness
for BERT and RoBERTabase with adapter modules,
where RoBERTabase+LoRA exhibits with 3.5% the
highest decrease. For the neutral group, we see
almost no change, whereas for the low female %
group, again, mixed results are observed.

3.3 Analysis: Mixed Fairness Results
For further analysis, we examine the bias in fully
finetuned models for each sensitive group. This
bias is categorized into different levels, and we eval-
uate the impact of adapter modules on bias within
each level, see Figure 2. For toxic text detection,
we consider biases related to religion, race, and
gender. For occupation classification, we assess
biases linked to the professions.

Results Our findings reveal a consistent trend:
when the fully finetuned model has low bias, us-
ing adapter modules results in lower variance and
does not add more bias to an unbiased base model.
Conversely, when the base model exhibits high

Figure 2: Variance increases with higher bias levels.
Boxplots depict fairness differences between the base
module and adapter modules across diverse bias levels
on group-level inherent in the base model. The color of
the plane indicates an improvement (green) or degrada-
tion (red) while no color signifies no clear direction.

bias, the impacts of adapter modules show greater
variance. Consequently, there is an increased likeli-
hood that adapter modules may significantly alter
the bias. We face the risk of further amplifying
existing bias for certain groups: e.g., for toxic text
detection, LoRA shows high positive change when
the base model has high bias. Similarly, for BIOS,
the positive TPRGap category displays positive out-
liers. Bias can also be strongly reduced in cases
where the base model has high bias, as observed
with LoRA and adapters in the positive TPRGap
category.

4 Conclusion

We run experiments on three text classification
datasets, comparing (1) finetuning all parameters of
LMs and (2) using adapter modules across the three
dimensions performance, efficiency, and fairness.
We first confirm that adapters perform roughly on
par with full finetuning, while increasing efficiency.
Regarding fairness, the impact of adapters is not
uniform and varies depending on the specific group.
A deeper analysis reveals that, when the fully fine-
tuned model has low bias, adapter modules tend to
not introduce additional bias. Yet, in cases where
the baseline model exhibits high bias levels, adapter
modules exhibit significant variance, thereby pos-
ing a risk of further amplifying the existing bias.



Therefore, we strongly recommend that both re-
searchers and practitioners working on text classi-
fication carefully assess potential fairness implica-
tions when utilizing adapter modules.

Limitations

Our investigation is focused exclusively on text
classification and examined a restricted set of iden-
tity groups. While our study sheds light on some
aspects of fairness, it may not fully capture the
full range of concerns. Nevertheless, it serves as
a starting point into the vast landscape of fairness
considerations.

Adapters prove effective in enhancing training ef-
ficiency by introducing minimal additional parame-
ters. However, it is essential to consider that during
inference, the use of adapters does add some com-
putational overhead, albeit a relatively small one.
This may impact real-time or resource-constrained
applications. Further, we do not experiment with
the largest and most recent language models such
as LLaMA (Touvron et al., 2023). Adding more
models might lead to additional insights. However,
as our results are mixed, it is unlikely that the main
conclusion will change with more models.

Finally, we acknowledge that, while we are ad-
dressing three dimensions (performance, efficiency,
and fairness), we ignore other important dimen-
sions such as multilinguality or interpretability.

Ethics Statement

We recognize that there are additional identity
groups to take into account for the toxic text classi-
fication task. Due to data limitations, we are only
able to focus on religion, gender, and race. More-
over, a more detailed analysis of identities within
each group is necessary, such as distinguishing be-
tween male and female within the gender category.
It is important to note that the BIOS dataset sim-
plifies gender into binary categories, which does
not fully represent the diversity of gender identities
and expressions. However, conducting a compre-
hensive study is again not feasible due to data con-
straints. Furthermore, the datasets we employ is
compiled from publicly accessible sources within
the public domain and is openly available to the
community for any purpose, whether commercial
or non-commercial (see Jigsaw Rules). We use the
datasets as intended, specifically for the evaluation
of model performance. We acknowledge that the
Jigsaw and HateXplain datasets include messages

that contain instances of vulgarity and degrading
language, which may be offensive or distressing to
certain readers.

Additionally, a potential risk of our study lies
in the reliance on abstract metrics to measure fair-
ness, as these metrics have demonstrated limita-
tions (Olteanu et al., 2017). Practitioners should be
cautious about placing excessive reliance on a sin-
gle metric without thoroughly assessing the impact
on their users.

It is important to note that our work utilized
approximately ∼1500 GPU hours, recognizing the
environmental and resource implications of such
usage. We aim to use resources efficiently and
ensure that our research adds value to our field
while minimizing any negative consequences.

Lastly, we state that we use large language mod-
els like ChatGPT (OpenAI, 2023) to rephrase and
check for any grammatical mistakes in our texts.
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Asian, Cau-
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homosexual_gay
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HateXplain dataset, along with their associated fine-
grained annotation.

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

A Appendix

A.1 Datasets

Jigsaw Dataset The Jigsaw dataset originated
from a Kaggle competition called "Unintended
Bias in Toxicity Classification" held in 2019,
hosted by Jigsaw (Jigsaw, 2019). It contains con-
tent from the Civil Comments platform, where
users engage in discussions and comment on news
articles. Jigsaw, a Google unit focused on issues
like disinformation, toxicity, censorship, and ex-
tremism, curated this collection. The user ID is
intentionally omitted from each sample, and the
annotators’ identities in the datasets have been
anonymized. The dataset spans posts from 2015 to
2017. The original dataset contains fine-grained an-
notations for identity groups such as Muslim. We,
however, follow Baldini et al. (2022) and focus on
broader, more general categories of identities, such
as religion. The resulting three primary identity
groups are religion, race, and gender & sexuality,
and their respective annotations are detailed in Ta-
ble 2. We abbreviate gender & sexuality as gender
for the sake of brevity. The toxicity label for each
sample is expressed as a fractional value, represent-
ing the proportion of human raters who deemed the
sample to be toxic. In our evaluation, we follow to
the Jigsaw (Jigsaw, 2019) competition guidelines,
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Split Total religion race gender
Jigsaw
Train 1,443,899 50,813 31,217 70,857
Dev 360,975 12,704 7,804 17,715
Test 97,320 3,316 1,911 4,367
HateXplain
Train 15,383 4,127 5,773 3,351
Dev 1,922 507 718 423
Test 1,924 496 734 405
BIOS
Train 255,710 — — —
Dev 39,369 — — —
Test 98,344 — — —

Table 3: Number of samples per split and sensitive
groups.

where any sample with a value of ≥ 0.5 is cate-
gorized as belonging to the positive class (toxic).
Furthermore, we divide the original dataset into
a training set, comprising 80% of the data, and a
development set, consisting of the remaining 20%.
We observe that a random splitting method would
yield highly variable results depending on the split
due to the dataset’s inherent imbalance of identity
groups. Consequently, we employ a stratified split
according to our three defined sensitive groups. We
report the results on the private test set. The result-
ing sample sizes are presented in Table 3.

HateXplain Dataset The HateXplain dataset
(Mathew et al., 2022) comprises 20,148 posts
from Twitter (https://X.com) and Gab (https:
//gab.com). It has been annotated by Amazon
Mechanical Turk workers with three labels: hate,
offensive, or normal speech. For our analysis, we
merge the hate and offensive categories into a sin-
gle label, creating a binary toxicity classification.
Similar to the Jigsaw dataset, each sample is an-
notated for targeted identities. To enhance robust-
ness against annotation noise, we select samples
with majority-voted labels. We consider identities
mentioned at least once by annotators, focusing
on broader identity categories, see Table 2. The
dataset’s original 8:1:1 train:development:test split
is maintained (Mathew et al., 2022), see Table 3.

BIOS Dataset The BIOS dataset (De-Arteaga
et al., 2019) is derived from 393,423 online biogra-
phies in English from the Common Crawl corpus,
each including the subject’s occupation and gen-
der. The dataset contains 28 occupations, assuming
a binary gender classification. Gender identifica-
tion is based on the pronoun extracted from the
biographies, usually written in the third person. It’s

Group BIOS Occupation
Low

Female %
surgeon, architect, software_engineer,
composer, comedian, pastor, dj, rapper

Balanced
Female %

professor, attorney, photographer,
journalist, psychologist, teacher, dentist,

painter, poet, filmmaker, accountant,
chiropractor, personal_trainer

High
Female %

physician, nurse, model, dietitian,
paralegal, yoga_teacher, interior_designer

Table 4: The classified occupations into their respective
groups based on the female population % within one
occupation.

essential to recognize that this dataset simplifies
gender into binary categories, which may not fully
represent the diversity of gender identities and ex-
pressions. Following the approach of De-Arteaga
et al. (2019), we split the data into 65% training,
10% development, and 25% test sets3, see Table
3. We categorize the occupations into three groups
based on the percentage of females within each oc-
cupation: High female % (> 0.7), balanced female
% (0.3 ≤ female % occupation ≤ 0.7), and low
female % (< 0.3), see Table 4.

A.2 Training Setup & Hyperparameter
Tuning

We use the Hugging Face transformers library
implementation (Wolf et al., 2020) for the four
language models: BERT (bert-base-uncased),
RoBERTabase (roberta-base), RoBERTalarge
(roberta-large), and GPT-2 (gpt2). In our
approach, we utilize a text sequence classifier with
a sequence length of 512 for toxic text detection.
However, for the BIOS dataset, we follow Panda
et al. (2022) and use a sequence length of 128,
considering the median length of a biography to be
only 72 tokens. To integrate adapters, we adopt the
Adapterhub framework (Pfeiffer et al., 2020) and
adapt the adapter architecture according to Pfeiffer
et al. (2021), with a default reduction factor set
at 16 unless explicitly specified otherwise. For
incorporating LoRA, we use the peft framework
(Mangrulkar et al., 2022) and, following Hu et al.
(2021), apply LoRA only on the Wq query and
Wv value projection matrices of the self-attention
module. Additionally, for GPT-2, we extend LoRA
to the Wk key projection matrix. We maintain a
default rank of 16 for all matrices.

We utilize AdamW (Loshchilov and Hutter,
2019) as an optimizer, with a weight decay of 0.01

3Preprocessed data downloaded from Ravfogel et al.
(2020).
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https://gab.com


Figure 3: Balanced accuracy and equalized odds metrics for BERT+Adapters, RoBERTa+Adapters, and GPT-
2+Adapters with different reduction factors {2, 16, 64}.

and a linear warming schedule with 10% of the
total training step as warm-up steps. All models
are trained with a batch size of 32. For toxic text
detection, we train the model for a maximum of 3
epochs with early stopping based on (balanced) ac-
curacy on the development set. For the occupation
task, we follow the same setup but extend the train-
ing to 5 epochs. Moreover, our models are trained
on V100 Nvidia GPUs, with the exception of the
GPT-2 and RoBERTalarge variants for the Jigsaw
dataset, for which we employ A100 Nvidia GPUs.

We create a minimal hyperparameter search set-
ting: For the base models, we train with a learn-
ing rate of {2e−5, 2e−6}, the adapter version with
{1e−4} and LoRA with {5e−4, 5e−5}. Each hyper-
parameter setting is trained with 5 different random
seeds. We average the resulting metrics. The opti-
mal model will be selected based on (balanced) ac-
curacy from the dev set after each epoch. The ideal
learning rate for the large base model RoBERTalarge
is 2e−5, whereas for BERT, RoBERTabase, and
GPT-2, it stands at 2e−6 — with the exception be-
ing Jigsaw, where GPT-2 performs optimally with
2e−5. In the case of LoRA, when paired with the
RoBERTalarge model, the optimal learning rate is
5e−5; for the remaining models, it is 5e−4.

A.3 Analysis: Number of Adapter Module
Parameters

In our default settings, we apply a reduction fac-
tor of 16 for adapters, generating 895K adapter
parameters for BERT, RoBERTabase, and GPT-
2. Meanwhile, for RoBERTalarge, the number of
adapter parameters is 3M . For LoRA, a rank
of 16 is used, yielding 590K LoRA parameters
for BERT, RoBERTabase, and GPT-2, and 1.6M
for RoBERTalarge. In this analysis, we explore
whether there exists a trade-off between the effi-

ciency achieved with varying the number of adapter
module parameters and the resulting fairness.

Setup We explore different reduction factors for
adapters: {2, 16, 64}, resulting in approximately
{7M, 895K, 230K} additional adapter parameters
for BERT, RoBERTabase and GPT-2. The greater
the reduction factor, the fewer trainable parameters
are involved, leading to more efficient training. For
LoRA, we can vary the rank of the LoRA module
to control the number of trainable parameters: We
use a rank of {64, 16, 8}, leading in approximately
{2.4M, 590K, 295K}. We limit our experiments to
Jigsaw and do not use RoBERTalarge due to its high
computational demands.

Results Our results are summarized in Figure 3.
We observe the following trend: a reduction fac-
tor of 64 significantly impairs performance across
all models, while factors 2 and 16 yield similar
results. This implies that, although a reduction
factor of 64 reduces the number of parameters, it
excessively diminishes the hidden size dimension,
thereby causing a slight decline in performance. On
the other hand, with LoRA, performance remains
stable across various ranks, suggesting that even a
small rank can achieve sufficient performance.

With regards to fairness, we do not detect any
clear patterns across models, highlight again how
adapter modules can have various effects on fair-
ness. For instance, when considering the re-
duction factor of 64 throughout all models and
factors, RoBERTa+Adapters exhibits the lowest
EO in the religion category with 0.188, whereas
GPT-2+Adapters demonstrates the highest EO
with 0.212. Although we observe a trend in
BERT+Adapters, where a higher reduction factor
decreases EO for the groups race and gender, this
does not hold across models.



Model Balanced Acc. EO AVG Epoch
Religion Race Gender Time

Jigsaw

BERT 84.10 19.38 9.30 8.12 4:44h
± 0.19 ± 1.32 ± 0.55 ± 0.46

BERT+Adapters 83.89 ↓ 21.00 ↑ 9.40 ↑ 7.62 ↓ 3:18h (−30% ↓)
± 0.52 ± 2.70 ± 0.34 ± 1.71

BERT+LoRA 83.91 ↓ 21.67 ↑ 9.49 ↑ 8.99 ↑ 3.20h (−30% ↓)
± 0.28 ± 2.05 ± 1.03 ± 0.79

RoBERTabase 85.65 18.79 11.11 6.43 4:48h
± 0.37 ± 0.91 ± 0.83 ± 0.72

RoBERTabase+Adapters 84.61 ↓ 20.57 ↑ 9.24 ↓ 8.25 ↑ 3:21h (−30% ↓)
± 0.28 ± 0.61 ± 0.85 ± 1.45

RoBERTabase+LoRA 84.98 ↓ 18.79 ↓ 12.41 ↑ 8.07 ↑ 3:25h (−29% ↓)
± 0.35 ± 1.01 ± 1.64 ± 0.94

GPT-2 83.57 19.12 8.38 8.17 3:55h
± 0.43 ± 1.82 ± 0.79 ± 0.49

GPT-2+Adapters 83.11 ↓ 20.93 ↑ 8.87 ↑ 6.84 ↓ 2:49h (−28% ↓)
± 0.29 ± 1.13 ± 1.05 ± 0.94

GPT-2+LoRA 83.18 ↓ 20.16 ↑ 11.06 ↑ 6.28 ↓ 3:10h (−19% ↓)
± 0.12 ± 0.51 ± 0.10 ± 0.11

RoBERTalarge 84.29 17.51 8.76 7.69 12:21h
± 0.20 ± 0.51 ± 0.26 ± 0.32

RoBERTalarge+Adapters 83.63 ↓ 16.52 ↓ 8.38 ↓ 7.94 ↑ 9:01h (−27% ↓)
± 0.12 ± 0.75 ± 0.57 ± 0.67

RoBERTalarge+LoRA 82.80 ↓ 17.57 ↑ 84.22 ↓ 7.38 ↓ 9:13h (−25% ↓)
± 0.13 ± 1.08 ± 0.32 ± 0.26

HateXplain

BERT 78.21 19.86 17.83 6.79 1:00m
± 0.22 ± 3.25 ± 1.05 ± 0.31

BERT+Adapters 77.61 ↓ 23.44 ↑ 17.19 ↓ 5.79 ↓ 0:42m (−32% ↓)
± 0.39 ± 4.49 ± 2.49 ± 1.14

BERT+LoRA 77.81 ↓ 21.44 ↑ 19.37 ↑ 4.42 ↓ 0:41m (−33% ↓)
± 0.57 ± 4.34 ± 1.76 ± 1.24

RoBERTabase 79.70 19.63 19.15 5.77 1:04m
± 0.41 ± 2.94 ± 2.67 ± 1.81

RoBERTabase+Adapters 78.44 ↓ 19.11↓ 16.26 ↓ 5.84 ↑ 0:42m (−34% ↓)
± 0.47 ± 3.33 ± 1.67 ± 1.49

RoBERTabase+LoRA 79.41 ↓ 22.58 ↑ 14.39 ↓ 4.51 ↓ 0:43m (−33% ↓)
± 0.48 ± 2.64 ± 2.06 ± 1.27

GPT-2 78.20 13.97 12.94 9.30 1:10m
± 0.66 ± 2.32 ± 2.54 ± 1.37

GPT-2+Adapters 77.07 ↓ 16.75 ↑ 12.85 ↓ 8.59 ↓ 0:47m (−33% ↓)
± 0.17 ± 3.35 ± 3.39 ± 0.64

GPT-2+LoRA 77.62 ↓ 15.11 ↑ 11.74 ↓ 6.95 ↓ 0:52m (−26% ↓)
± 0.53 ± 1.98 ± 1.86 ± 1.12

RoBERTalarge 80.43 16.66 14.86 4.82 3:25m
± 0.50 ± 1.66 ± 1.91 ± 1.58

RoBERTalarge+Adapters 79.84 ↓ 20.29 ↑ 13.48 ↓ 4.83 ↑ 2:12m (−36% ↓)
± 0.71 ± 2.32 ± 1.68 ± 1.13

RoBERTalarge+LoRA 79.65 ↓ 21.52 ↑ 12.36 ↓ 2.50 ↓ 2:13m (−35% ↓)
± 0.43 ± 1.46 ± 2.69 ± 1.37

Table 5: We report the exact numerical values in decimal numbers for our main results on the Jigsaw and HateXplain
dataset. Arrows indicate increase (↑) or decrease (↓) while the color indicates an improvement (green) or degradation
(red). Numbers underneath with ± symbol are the standard deviation.



Model Accuracy TPR_Gap AVG Epoch Time
Low Balanced High

BIOS

BERT 85.54 12.40 3.43 21.44 30:31m
± 1.37 ± 1.20 ± 0.59 ± 1.23

BERT+Adapters 85.28 ↓ 11.94 ↓ 3.90 ↑ 23.25 ↑ 20:20m (−33% ↓)
± 1.46 ± 0.86 ± 0.28 ± 1.53

BERT+LoRA 85.06 ↓ 11.32 ↓ 3.86 ↑ 22.64 ↑ 21:14m (−30% ↓)
± 0.12 ± 0.59 ± 0.30 ± 0.97

RoBERTabase 85.53 11.36 3.44 20.81 30:14m
± 0.07 ± 0.80 ± 0.46 ± 2.35

RoBERTabase+Adapters 85.78 ↑ 11.92 ↑ 3.40 ↓ 21.52 ↑ 20:09m (−33% ↓)
± 1.51 ± 1.06 ± 0.39 ± 0.96

RoBERTabase+LoRA 85.33 ↓ 11.78 ↑ 4.00 ↑ 24.03 ↑ 21:21m (−29% ↓)
± 0.06 ± 0.37 ± 0.34 ± 0.39

GPT-2 84.61 12.14 3.59 23.20 43:20m
± 0.12 ± 1.02 ± 0.35 ± 1.18

GPT-2+Adapters 84.58 ↓ 12.65 ↑ 3.90 ↑ 22.72 ↓ 32:57m (−24% ↓)
± 0.07 ± 0.79 ± 0.35 ± 1.16

GPT-2+LoRA 84.37 ↓ 11.47 ↓ 3.57 ↓ 22.56 ↓ 36:50m (−15% ↓)
± 0.08 ± 0.45 ± 0.37 ± 0.74

RoBERTalarge 87.10 9.42 3.04 18.60 96:26m
± 0.09 ± 0.66 ± 0.38 ± 0.74

RoBERTalarge+Adapters 86.94 ↓ 10.92 ↑ 3.03 ↓ 18.84 ↑ 66:56m (−31% ↓)
± 0.04 ± 1.44 ± 0.37 ± 0.74

RoBERTalarge+LoRA 86.62 ↓ 9.57 ↑ 3.17 ↑ 18.85 ↑ 68:52m (−29% ↓)
± 0.05 ± 0.2 ± 0.13 ± 0.46

Table 6: We report the exact numerical values for our main results on the BIOS dataset. Low, Balanced and High
columns are the Low Female %, Balanced Female % and High Female % groups. Numbers underneath with ±
symbol are the standard deviation.
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