Distinguishing Fact from Fiction: A Benchmark Dataset for Identifying Machine-Generated Scientific Papers in the LLM Era.

Edoardo Mosca
TU Munich,
Department of Informatics,
Germany
edoardo.mosca@tum.de

Mohamed Hesham I. Abdalla
TU Munich,
Department of Informatics,
Germany
mohamed.abdalla@tum.de

Paolo Basso
Polytechnic of Milan,
Department of EIB,
Italy
paolo3.basso@mail.polimi.it

Margherita Musumeci
Polytechnic of Milan,
Department of EIB,
Italy
margherita.musumeci@mail.polimi.it

Georg Groh
TU Munich,
Department of Informatics,
Germany
grohg@in.tum.de

Abstract

As generative NLP can now produce content nearly indistinguishable from human writing, it becomes difficult to identify genuine research contributions in academic writing and scientific publications. Moreover, information in NLP-generated text can potentially be factually wrong or even entirely fabricated. This study introduces a novel benchmark dataset, containing human-written and machine-generated scientific papers from SCIgen, GPT-2, GPT-3, ChatGPT, and Galactica. After describing the generation and extraction pipelines, we also experiment with four distinct classifiers as a baseline for detecting the authorship of scientific text. A strong focus is put on generalization capabilities and explainability to highlight the strengths and weaknesses of detectors. We believe our work serves as an important step towards creating more robust methods for distinguishing between human-written and machine-generated scientific papers, ultimately ensuring the integrity of scientific literature.

1 Introduction

Generative Natural Language Processing (NLP) systems—often based on Large Language Models (LLMs) (Brown et al., 2020; Scao et al., 2022; OpenAI, 2023)—have experienced significant advancements in recent years, with state-of-the-art algorithms generating content that is almost indistinguishable from human-written text (Radford et al., 2019; Zellers et al., 2019; Keskar et al., 2019; Brown et al., 2020). This progress has led to numerous applications in various fields, such as chatbots (OpenAI, 2022), automated content generation (Chen et al., 2021), and even summarization tools (Liu, 2019). However, these advancements also raise concerns regarding the integrity and authenticity of academic writing and scientific publications (Dergaa et al., 2023; Stokel-Walker, 2022).

It is indeed increasingly difficult to differentiate genuine research contributions from artificially generated content. Moreover, we are at an increased risk of including factually incorrect or entirely fabricated information (Maynez et al., 2020; Tian et al., 2019). Reliably identifying machine-generated sci-
cientific publications becomes thus crucial to main-
tain the credibility of scientific literature and fos-
tering trust among researchers.

This work introduces a novel benchmark to ad-
dress this issue. Our contribution—also briefly
sketched in 1—can be summarized as follow:

1) We present a dataset comprising of human-
written and machine-generated scientific doc-
duments from various sources: SCIgen (Strib-
ling et al., 2005), GPT-2 (Radford et al., 2019),
GPT-3 (Brown et al., 2020), ChatGPT (Open-
AI, 2022), and Galactica (Taylor et al., 2022).
Each document includes abstract, introduc-
ion, and conclusion in a machine-readable
format.

2) We experiment with four distinct classifiers—
RoBERTa (Liu et al., 2019), Galactica (Taylor
et al., 2022), GPT-3 (Brown et al., 2020), and
DetectGPT (Mitchell et al., 2023)—as a base-
line for detecting the authorship of scientific
text, assessing their performance in differenti-
ating between human and machine-generated
content.

3) We emphasize experimenting with generaliza-
tion capabilities and explainability to provide
insights into the strengths and weaknesses of
each detector.

We release our benchmark dataset, baseline mod-
els, and testing code to the public to promote fur-
ther research and aid the development of more ro-
 bust detection methods. We release our benchmark
dataset and baseline models as well as all code used
for experimental results.

2 Related Work

2.1 (Machine-Generated) Scientific
Publication Corpora

The ACL Anthology2 (Bird et al., 2008) and arXiv3
(arXiv.org submitters, 2023) are widely used re-
sources for accessing scientific texts and their as-
associated metadata. However, these databases do
not provide structured text for scientific documents,
necessitating the use of PDF parsers and other tools
to extract text and resolve references. Several ef-
forts have been made to develop structured text
databases for scientific documents. (Cohan and
Goharian, 2015; Saier and Färber, 2019; Lo et al.,
2020).

Despite progress in generating text, machine-
generated datasets for scientific literature remain
limited. A recent study by Kashnitsky et al. (2022)
compiled a dataset including retracted, summa-
rized, and paraphrased paper abstracts and excerpts,
as well as text generated by GPT-3 (Brown et al.,
2020) and GPT-Neo (Black et al., 2021). It’s worth
noting that the dataset lists retracted papers as
machine-generated, which may not always be ac-
curate, and only includes excerpts or abstracts of
the papers.

Liyanage et al. (2022) proposed an alternative ap-
proach, in which they generated papers using GPT-
2 (Radford et al., 2019) and Arxiv-NLP4. How-
ever, their dataset was limited to only 200 samples,
which were restricted to the fields of Artificial In-
telligence and Computation and Language.

2.2 Generative NLP for Scientific Articles

Generative NLP for scientific publications has
evolved significantly in recent years. Early meth-
ods, such as SCIgen (Stribling et al., 2005), used
Context-Free-Grammar (CFG) to fabricate com-
puter science publications. These often contain
nonsensical outputs due to CFG’s limited capacity
for generating coherent text.

The advent of attention, transformers (Waswani
et al., 2017), and LLMs (Brown et al., 2020) has
paved the way for more sophisticated models ca-
pable of generating higher-quality scientific con-
tent. Some—such as (Devlin et al., 2019), GPT-3
(Brown et al., 2020), ChatGPT (OpenAI, 2022),
and Bloom (Scao et al., 2022)—are built for gen-
eral purposes. Others, instead, are domain-specific
and specialized for generating scientific literature.
Popular examples in this category are SciBERT
(Maheshwari et al., 2021) and Galactica (Taylor
et al., 2022).

Both general and domain-specific models have
shown outstanding results in various scientific
tasks, demonstrating their potential in generating
coherent and contextually relevant scientific text.
This same technology has also been applied to other
domains, including writing news articles (Zellers
et al., 2019), producing learning material (MacNeil
et al., 2022), and creative writing (Swanson et al.,
2021).

1 huggingface.co/datasets/tum-nlp/IDMGSP
2 https://aclanthology.org/
3 https://arxiv.org/
4 https://huggingface.co/lysandre/arxiv-nlp
2.3 Detection of Machine-Generated Text

The ability to automatically generate convincing content has motivated researchers to work on its automatic detection, especially given its potential implications for various domains.

Several approaches to detecting machine-generated text have emerged, employing a range of techniques. Some studies have focused on utilizing hand-crafted features (Gehrmann et al., 2019), bag-of-words features (Fagni et al., 2021), or neural features in combination with supervised models to distinguish between human and machine-generated content (Bakhtin et al., 2019; Ippolito et al., 2019; Fagni et al., 2021).

Alternative approaches explore using the probability curvature of the generative model itself (Mitchell et al., 2023) or watermarking machine-generated text to facilitate detection (Kirchenbauer et al., 2023).

2.4 Detection of Machine-Generated Scientific Publications

As we have seen in 2.3, there exist several general-purpose solutions aiming at detecting NLP-generated text. The detection of automatically generated scientific publications, instead, is an emerging subarea of research with very limited existing work. Previous approaches have primarily focused on identifying text generated by SCIgen (Stribling et al., 2005) using hand-crafted features (Amancio, 2015; Williams and Giles, 2015), nearest neighbor classifiers (Nguyen and Labbé, 2016), and grammar-based detectors (Cabanac and Labbé, 2021). More recent studies have shown promising results in detecting LLM-generated papers using SciBERT (Beltagy et al., 2019), DistilBERT (Sanh et al., 2019), and other models (Glazkova and Glazkov, 2022; Liyanage et al., 2022). Nonetheless, these approaches have mostly been tested on abstracts or a substantially limited set of paper domains.

3 Benchmark Dataset

In this section, we delve into the construction of our benchmark dataset, which comprises both human-written and machine-generated scientific papers. Often, for simplicity, we refer to the former group with real, and to the latter with fake. In section 3.1, we elaborate on the process we followed to extract data from the PDF documents of real papers. In section 3.2, we describe instead our prompting pipelines and how we utilized various generators to produce fake scientific papers.

Table 1 offers an overview of our dataset, including sources and numbers of samples and tokens.

<table>
<thead>
<tr>
<th>Source</th>
<th>Quantity</th>
<th>Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>arXiv parsing 1 (real)</td>
<td>12k</td>
<td>13.40M</td>
</tr>
<tr>
<td>arXiv parsing 2 (real)</td>
<td>4k</td>
<td>3.20M</td>
</tr>
<tr>
<td>SCIgen (fake)</td>
<td>3k</td>
<td>1.80M</td>
</tr>
<tr>
<td>GPT-2 (fake)</td>
<td>3k</td>
<td>2.90M</td>
</tr>
<tr>
<td>Galactica (fake)</td>
<td>3k</td>
<td>2.00M</td>
</tr>
<tr>
<td>ChatGPT (fake)</td>
<td>3k</td>
<td>1.20M</td>
</tr>
<tr>
<td>GPT-3 (fake)</td>
<td>1k</td>
<td>0.50M</td>
</tr>
<tr>
<td>Total real (extraction)</td>
<td>16k</td>
<td>16.60M</td>
</tr>
<tr>
<td>Total fake (generators)</td>
<td>13k</td>
<td>8.40M</td>
</tr>
<tr>
<td>Total</td>
<td>29k</td>
<td>25M</td>
</tr>
</tbody>
</table>

Table 1: Data sources included in our dataset and their respective sizes.

3.1 Real Papers Collection

To collect human-written—or real—scientific papers for our dataset, we source them from the arXiv dataset (arXiv.org submitters, 2023) hosted on Kaggle5. This provides comprehensive metadata, including title, abstract, publication date, and category. However, the introduction and conclusion sections are not part of the metadata, which implies the need for PDF parsing to extract these sections.

From the metadata, each paper’s ID and version are utilized to construct the document path and retrieve the corresponding PDF from the publicly accessible GCS bucket. Each PDF is then fed to the PyMuPDF (Rudduck, 2021) library to be parsed and to extract the relevant content. Unfortunately, parsing PDFs is known to be very challenging. This is particularly true for a double-column format, which many scientific papers have. Despite having tested several heuristic rules to identify and extrapolate the correct sections, the process can still fail at times. We discard data points where the parsing was unsuccessful.

The resulting set includes 12,000 real papers. Furthermore, we collect an additional 4,000 samples undergoing a different parsing procedure (Shrestha and Zhou, 2022). The intention is to ensure there are no recognizable parsing artifacts that inadvertently ease the detection process (see 4).

5https://www.kaggle.com/
3.2 Fake Papers Generation

For the fake component of our dataset, we employ several models to generate abstracts, introductions, and conclusions based on scientific paper titles. The titles of the real papers sourced from the arXiv database (see 3.1) serve as prompts for the models to generate the target sections—i.e. abstract, introduction, and conclusion.

To create fake scientific papers, we fine-tune GPT-2 and GPT-3 instances (Radford et al., 2019; Brown et al., 2020) and also leverage SCIgen (Stribling et al., 2005), Galactica (Taylor et al., 2022), and ChatGPT (OpenAI, 2022). For each model—as shown in Figure 2—we employ a unique prompting/querying strategy to produce the desired paper sections.

This combination of models aims at generating a diverse set of artificial scientific papers. Concrete examples of generated papers can be found in appendix A.

3.2.1 SCIgen

Alongside the papers produced by the various LLMs, our fake dataset incorporates documents generated by SCIgen (Stribling et al., 2005). Despite the seemingly straightforward task of detecting CFG-generated text, it is still relevant to ensure that detectors can distinguish machine-generated papers even if they are poorly written and contain nonsensical content. Stribling and Aguayo (2021) shows that such papers have been accepted in scientific venues in the past.

Prompting SCIgen is done simply by running it as an offline script which generates all the needed sections including the title. The entire paper in \texttt{LATEX} format is generated as a result.

3.2.2 GPT-2

We fine-tune three distinct GPT-2 base models (117M) (Radford et al., 2019) to individually generate each section based on the given title. The models are trained in a seq2seq fashion (Sutskever et al., 2014), with the training procedure spanning six epochs and incorporating 3,500 real papers. When encountering lengthy inputs, we truncate those exceeding 1,024 tokens, potentially resulting in less coherent introductions and conclusions. Abstracts remain more coherent as they typically fall below this threshold.

\textbf{Hyperparameters:} For training we use a batch size of 16 across all six epochs. We set the $\text{max}_\text{new}_\text{token}$ to 512, top_k to 50, and top_p to 0.5 for all three models.

\textbf{Post-processing:} We remove generated "\"n" characters and any extra sections not explicitly mentioned in the prompt. Additionally, we remove incomplete sentences preceding the start of a new sentence. These are indeed common artifacts of GPT-2 and are easily identifiable by lowercase letters.

Figure 2: Generation pipeline used for each model. In the case of Galactica and GPT-3 (Figure 2a), each section depends on the previous sections. On the other hand, ChatGPT’s generation sequence (Figure 2b) requires only the title to generate all the necessary sections at once. Finally, for GPT-2 (Figure 2c), three separate models are used to generate each of the sections based solely on the title.
Although our GPT-2 model is specifically fine-tuned for the task, generating long pieces of text occasionally results in less meaningful content. Moreover, we observe that decoupling the generation of sections can lead to inconsistencies among the generated sections within the papers.

3.2.3 Galactica

Galactica is trained on a large corpus of scientific documents (Taylor et al., 2022). Therefore, it is already well-suited for the task of generating scientific papers. To facilitate the generation of coherent long-form text, we divide the generation process into smaller segments, with each section relying on preceding sections for context. For instance, while generating a conclusion, we provide the model with the title, abstract, and introduction as concatenated text.

Hyperparameters: We use Galactica base (1.3B parameters) (Taylor et al., 2022) to generate each paper section based on the previous sections. The complete set of hyperparameters can be found in appendix A. Additionally, we enforce max length left padding. Due to the limited model capacity, limiting the output number of tokens is necessary to avoid the hallucination risk introduced by long text generation.

Post-processing: To ensure completeness and coherence in the generated text, we devise a generation loop that meticulously assesses the quality of the output. For example, if the generated text lacks an `<EOS>` (end-of-sentence) token, the model is prompted to regenerate the text. Furthermore, we eliminate any special tokens introduced by Galactica during the process.

While Galactica base has 1.3B parameters, it is still smaller than ChatGPT, which can result in less coherent outputs when generating longer text segments. As a result, prompting the model to generate a specific section with preceding sections as context yields better outcomes compared to providing only the title as context and requesting the model to generate all three sections simultaneously.

3.2.4 ChatGPT

To generate a cohesive document, we prompt ChatGPT (OpenAI, 2022) with "Write a document with the title [TITLE], including an abstract, an introduction, and a conclusion", substituting [TITLE] with the desired title utterance. ChatGPT’s large size (20B parameters) and strong ability to consider context eliminate the necessity of feeding previous output sections into the prompt for generating newer ones.

Hyperparameters: For the entire generation process, we use the default temperature of 0.7.

Despite not being explicitly trained for scientific text generation, ChatGPT can produce extensive, human-like text in this domain. This capability likely stems from the model’s large size, the extensive datasets it was trained on, and the incorporation of reinforcement learning with human feedback.

3.2.5 GPT-3

We fine-tune an instance of GPT-3 (6.7B) (Brown et al., 2020) with 178 real samples. Output papers generated through an iterative cascade process (like for Galactica) present a much higher quality than those forged in a single step (like for ChatGPT) (Shrestha and Zhou, 2022). Hence, we decide to opt for the latter strategy.

Pre/Post-Processing: To force the generation of cleaner outputs, we add a `<END>` token at the end of each input used for fine-tuning. GPT-3 mimics this behavior and adds the token as well, and we remove every token added after generation `<END>`.

While still not on par with ChatGPT-generated outputs, we report a high quality for GPT-3-crafted papers.

4 Detection Experiments

In this section, we conduct experiments about identifying the source of a given paper—i.e. determining whether it is fake or real. We start by defining data splits and subsets for training and testing, which are useful to evaluate generalization capabilities. Next, we outline the classifiers used as baselines to measure performance on the benchmark task. Finally, we examine the results in terms of performance and apply post-hoc explainability methods to the classifiers to gain deeper insights into the detection process.

4.1 Data Splits and Generalization Tests

In this section, we perform experiments about identifying the source of a given paper—i.e. determining whether it is fake or real. We start by defining data splits and subsets for training and testing, which are useful to evaluate generalization capabilities. Next, we outline the classifiers used as baselines to measure performance on the benchmark task. Finally, we examine the results in terms of performance and apply post-hoc explainability methods to the classifiers to gain deeper insights into the detection process.
Table 2: Overview of the datasets used to train and evaluate the classifiers. Each column represents the number of papers used per source. Concerning real papers, unless indicated, we use samples extracted with parsing 1 (see 3.1).

4.2 Classifiers

We fine-tune GPT-3 (Brown et al., 2020), Galactica (Taylor et al., 2022), and RoBERTa (Liu et al., 2019) to perform the downstream task of classifying scientific papers as fake or real based on their content (abstract, introduction, and conclusion sections). We remind the reader that all titles are real.

To accommodate memory limitations, we impose a restriction on the input tokens, resulting in the truncation of longer texts. However, since the average length of the combined input sections is 900 tokens, this constraint does not lead to significant information loss.

4.2.1 GPT-3

We fine-tune a GPT-3 (Brown et al., 2020) Ada model for the classification task. GPT-3 is fine-tuned in a causal manner, where the model is prompted with the concatenated paper sections along with their corresponding label. This is set up as a binary classification where the output is a single token indicating whether the paper is real (0) or fake (1). During inference, the model generates a single token based on the sections of a given paper.

As fine-tuning GPT-3 models requires a paid API, we train it only on a smaller subset of our dataset (TRAIN-SUB) shown in Table 2. We limit the number of input tokens to 2,048 while retaining the default hyperparameters provided by the API.

4.2.2 Galactica

We adapt Galactica (Taylor et al., 2022) from a causal language model that predicts probabilities for each word in the vocabulary to a binary classifier with an output layer that predicts probabilities for two labels: fake and real.

The model is provided with all sections as concatenated together with the corresponding label. Although we retrain the output layer to accommodate this change, this approach proves more memory-efficient compared to using an output layer that produces probabilities for the entire vocabulary.

Hyperparameters. To cope with memory constraints, we limit the input number of tokens to 2,048. Additionally, we adjust the batch size to 2 with gradient accumulation steps of 4 and enabled mixed precision. Additionally, we set the number of epochs to 4, weight decay to 0.001, and warm-up steps to 1,000. Our initial learning rate is $5e^{-6}$.

4.2.3 RoBERTa

Finally, our third classifier is RoBERTa base (125M parameters) (Liu et al., 2019). RoBERTa is limited to 512 input tokens, meaning that all text exceeding this limit is ignored. Our dataset exceeds this constraint for many entries. We choose to address the problem by fine-tuning three separate RoBERTa models to classify the three sections individually, rather than retraining the input layer by enlarging the input size. The mode of the three classifications is taken as a final output. We prompt each model with the capitalized name of the section plus the content of the latter, e.g. Abstract: In this paper..

Hyperparameters. To fine-tune the RoBERTa base, we set the number of epochs to 2, weight decay to 0.001, and batch size to 16. As with Galactica, the initial learning rate is $5e^{-6}$, and the warmup steps 1,000.
4.3 Performance

Table 3 presents a summary of the accuracies achieved by our models on various splits. We have to exclude the GPT-3 TRAIN+GPT3 and TRAIN-CG experiments due to limited OpenAI API credits. Results of our fine-tuned models are also compared with DetectGPT as an existing zero-shot detection baseline (Mitchell et al., 2023).

All models perform poorly on out-of-domain papers generated by GPT-3 curie (OOD-GPT3) (Shrestha and Zhou, 2022). This result supports the findings of previous studies by Bakhtin et al. (2019) and Shrestha and Zhou (2022), which indicate that models trained on specific generators tend to overfit and perform poorly on data outside their training distribution. However, after training our Galactica and RoBERTa models with a few more GPT-3 examples, the models achieve higher accuracies (70% and 100% respectively). It is worth noting that our RoBERTa model exhibits excellent results when evaluated on a dataset of ChatGPT-generated papers (TECG). The model achieves an accuracy of 88% without prior training on a similar dataset, and 100% accuracy when a similar dataset is included in the training (TRAIN). These results outperform Galactica in both scenarios.

Results on OOD-REAL—i.e. real paper processed with a different parser—suggest that our models do not learn any strong features introduced by our PDF parser. DetectGPT overfits papers generated with GPT-2 and sees any sample coming from a different source as real. Indeed, it performs well on OOD-REAL and poorly on OOD-GPT3.

4.4 Explainability Insights

We use LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017) to inspect predictions made by the three detectors. While these explanations fail to convey a concise overview, they are still useful to notice patterns and similarities across samples sharing labels and sources (Mosca et al., 2022b).

Often, RoBERTa and Galactica models tend to classify papers as real when the papers include infrequent words and sentences starting with adverbs. Also, we notice that SHAP explanations corresponding to real papers have all words with low Shapley values. We believe this is intuitive as a paper appears real if doesn’t contain any artifact that strongly signals an AI source.

On the other hand, papers whose sections begin with "In this paper...", "In this work...", or "In this study..." are often marked as false. The same goes for those containing repeated words, spelling mistakes, or word fragments such as "den", "oly", "um". Detectors are also able to spot incoherent content and context as well as sections that are unnaturally short and do not convey any specific point.

Several explanation instances can be found in the appendix B for further inspection. We choose not to provide an explanation for our GPT-3 classifier since it requires many requests to OpenAI’s paid API.

5 Limitations and Future Work

Despite memory and GPU limitations presenting significant obstacles for our project, we were still able to create high-quality fake scientific papers. Nonetheless, we believe there is room for improvement in addressing such limitations.

Due to the complexity of parsing PDFs, we are currently limited to specific sections (abstract, introduction, conclusion) instead of complete papers. Moreover, processing entire publications would require substantial computational efforts. We believe that selecting sections dynamically at random instead of a fixed choice is worth exploring and will
be the focus of future work.

Beyond DetectGPT (Mitchell et al., 2023), other zero-shot text detectors such as GPTZero\(^7\) present promising solutions worth testing on our benchmark dataset. However, at the time of writing, such solutions are not available for experiments at scale.

In future work, we aim to address these limitations by exploring dynamic section selection, improving papers’ quality, adding human-LLMs co-created samples, and investigating the potential of zero-shot text detectors like GPTZero as they become more accessible and scalable.

6 Discussion, Ethical Considerations, and Broader Impact

It is important to emphasize that our work does not condemn the usage of LLMs. The legitimacy of their usage should be addressed by regulatory frameworks and guidelines. Still, we strongly believe it is crucial to develop countermeasures and strategies to detect machine-generated papers to ensure accountability and reliability in published research.

Our benchmark dataset serves as a valuable resource for evaluating detection algorithms, contributing to the integrity of the scientific community. However, potential challenges include adversarial attacks and dataset biases (Mosca et al., 2022a; Huber et al., 2022). It is essential to develop robust countermeasures and strive for a diverse, representative dataset.

7 Conclusion

This work introduced a benchmark dataset for identifying machine-generated scientific papers in the LLM era. Our work creates a resource that allows researchers to evaluate the effectiveness of detection methods and thus support the trust and integrity in the scientific process.

We generated a diverse set of papers using both SCIgen and state-of-the-art LLMs—ChatGPT, Galactica, GPT-2, and GPT-3. This ensures a variety of sources and includes models capable of generating convincing content. We fine-tune and test several baseline detection models—GPT-3, Galactica, and RoBERTa—and compare their performance to DetectGPT. The results demonstrated varying degrees of success, with some models showing remarkable performance on specific subsets while sometimes struggling with out-of-domain data.

By providing a comprehensive platform for evaluating detection techniques, we contribute to the development of robust and reliable methods for identifying machine-generated content. Moving forward, we plan to address the current limitations and further enhance the utility of our benchmark for the research community.

We release a repository containing our benchmark dataset as well as the code used for experimental results\(^8\).

Acknowledgements

This paper has been supported by the German Federal Ministry of Education and Research (BMBF, grant 01IS17049). Additionally, we would like to thank Leslie McIntosh and the Holtzbrinck Publishing Group for their guidance throughout our research journey.

References

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-Neo: Large

\(^7\)https://gptzero.me

\(^8\)huggingface.co/datasets/tum-nlp/IDMGSP
Scale Autoregressive Language Modeling with Mesh-Tensorflow.

Processing, pages 130–133, Online. Association for Computational Linguistics.

A Appendix: Generation Examples

In this section, we present examples of text that were generated using the models we employed. For generating text with the Galactica model, an overview of the hyperparameters used is provided in Table 4.

<table>
<thead>
<tr>
<th>Input Section(s)</th>
<th>Output Section</th>
<th>tokenizer max_input_size</th>
<th>max_new_tokens</th>
<th>do_sample</th>
<th>temperature</th>
<th>top_k</th>
<th>top_p</th>
<th>no_repeat_ngram_size</th>
<th>early_stopping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Abstract</td>
<td>64</td>
<td>512</td>
<td>True</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Title + Abstract</td>
<td>Introduction</td>
<td>576 (64 + 512)</td>
<td>1024</td>
<td>True</td>
<td>0.7</td>
<td>25</td>
<td>0.9</td>
<td>10</td>
<td>True</td>
</tr>
<tr>
<td>Title + Abstract</td>
<td>Conclusion</td>
<td>1600 (64 + 512 + 1024)</td>
<td>1024</td>
<td>True</td>
<td>0.7</td>
<td>25</td>
<td>0.9</td>
<td>10</td>
<td>True</td>
</tr>
</tbody>
</table>

Table 4: Hyperparameters used to generate each paper section in the Galactica model. Each row corresponds to a decoding of a section based on the previous input sections. Here we used parameters of the MODEL.GENERATE function provided by Huggingface (Wolf et al., 2019).

A.1 ChatGPT

Figures 3 and 4 provide examples of prompts that can be used to generate paper sections using ChatGPT.

![Example 1 of Prompting ChatGPT to produce sections of a scientific paper given the paper title.](image-url)

Figure 3: Example 1 of Prompting ChatGPT to produce sections of a scientific paper given the paper title.
Figure 4: Example 2 of Prompting ChatGPT to produce sections of a scientific paper given the paper title.

A.2 Galactica

Each subsection shows how Galactica is prompted to generate the abstract, the introduction and the conclusion sections.

A.2.1 Abstract Generation

INPUT:

Title: On the Global Structure of Hopf Hypersurfaces in Complex Space Form

OUTPUT:

Abstract: For a generic hypersurface in complex space form, all Hopf hypersurfaces are proved to be homogeneous or Hopf homogeneous. As a consequence, it is shown that the generalized Sasakian metric is a Ricci soliton on a Hopf hypersurface.

A.2.2 Introduction Generation

INPUT:

Title: On the Global Structure of Hopf Hypersurfaces in Complex Space Form

Abstract: For a generic hypersurface in complex space form, all Hopf hypersurfaces are proved to be homogeneous or Hopf homogeneous. As a consequence, it is shown that the generalized Sasakian metric is a Ricci soliton on a Hopf hypersurface.

Introduction:

A Hopf hypersurface is a hypersurface which admits a Hopf field, that is, a vector field such that \([\xi, \xi]\) is a normal vector field. The Hopf field is unique up to multiplication by a positive constant. The existence of Hopf fields is equivalent to the existence of a 1-form \(\eta\) such that \(\eta \wedge d\eta^{n-1}\) is a volume
form. Let M^n be a hypersurface in a complex space form $M^{2n+1}(c)$ with constant sectional curvature c. We denote by g the metric induced by the Riemannian metric of $M^{2n+2}(c)$. The Hopf field is given by $\xi = \frac{1}{\sqrt{n}} J\nabla f$, where J is the complex structure on M^{2n+3} and f is a function on $M^n \subset M^{2n+1}$.

In [1], Wang and Chen showed that a Hopf hypersurface in $M^{2n+1}(c)$ is homogeneous if and only if the Hopf field is parallel. In this paper, we study the structure of Hopf hypersurfaces in complex space form. We show that a Hopf hypersurface is homogeneous if and only if it is Hopf homogeneous. We also show that a Hopf hypersurface is Hopf homogeneous if and only if the generalized Sasakian metric is a Ricci solitons on it.

A.2.3 Conclusion Generation

INPUT:

Title: On the Global Structure of Hopf Hypersurfaces in Complex Space Form

Abstract: For a generic hypersurface in complex space form, all Hopf hypersurfaces are proved to be homogeneous or Hopf homogeneous. As a consequence, it is shown that the generalized Sasakian metric is a Ricci soliton on a Hopf hypersurface.

Introduction:

A Hopf hypersurface is a hypersurface which admits a Hopf field, that is, a vector field such that $[\xi, \xi]$ is a normal vector field. The Hopf field is unique up to multiplication by a positive constant. The existence of Hopf fields is equivalent to the existence of a 1-form η such that $\eta \wedge d\eta^{n-1}$ is a volume form. Let M^n be a hypersurface in a complex space form $M^{2n+1}(c)$ with constant sectional curvature c. We denote by g the metric induced by the Riemannian metric of $M^{2n+2}(c)$. The Hopf field is given by $\xi = \frac{1}{\sqrt{n}} J\nabla f$, where J is the complex structure on M^{2n+3} and f is a function on $M^n \subset M^{2n+1}$. In [1], Wang and Chen showed that a Hopf hypersurface in $M^{2n+1}(c)$ is homogeneous if and only if the Hopf field is parallel. In this paper, we study the structure of Hopf hypersurfaces in complex space form. We show that a Hopf hypersurface is homogeneous if and only if it is Hopf homogeneous. We also show that a Hopf hypersurface is Hopf homogeneous if and only if the generalized Sasakian metric is a Ricci solitons on it.

Conclusion:

OUTPUT:

We obtain a complete classification of Hopf hypersurfaces in complex space forms.

A.3 GPT-3

The following frame shows GPT-3 training prompt. the input label is separated from the input by the separator token (###).

Abstract:

For a generic hypersurface in complex space form, all Hopf hypersurfaces are proved to be homogeneous or Hopf homogeneous. As a consequence, it is shown that the generalized Sasakian metric is a Ricci soliton on a Hopf hypersurface.

Introduction:

A Hopf hypersurface is a hypersurface which admits a Hopf field, that is, a vector field such that $[\xi, \xi]$ is a normal vector field. The Hopf field is unique up to multiplication by a positive constant. The existence of Hopf fields is equivalent to the existence of a 1-form η such that $\eta \wedge d\eta^{n-1}$ is a volume form. Let M^n be a hypersurface in a complex space form $M^{2n+1}(c)$ with
We denote by g the metric induced by the Riemannian metric of $M^{2n+2}(c)$. The Hopf field is given by $\xi = \frac{1}{\sqrt{n}}J\nabla f$, where J is the complex structure on M^{2n+3} and f is a function on $M^n \subset M^{2n+1}$. In [1], Wang and Chen showed that a Hopf hypersurface in $M^{2n+1}(c)$ is homogeneous if and only if the Hopf field is parallel. In this paper, we study the structure of Hopf hypersurfaces in complex space form. We show that a Hopf hypersurface is homogeneous if and only if it is Hopf homogeneous. We also show that a Hopf hypersurface is Hopf homogeneous if and only if the generalized Sasakian metric is a Ricci solitons on it.

Conclusion:

For a generic hypersurface in complex space form, all Hopf hypersurfaces are proved to be homogeneous or Hopf homogeneous. As a consequence, it is shown that the generalized Sasakian metric is a Ricci soliton on a Hopf hypersurface.

###

A.4 GPT-2

Here below, an example of how the fine-tuned GPT-2 was used to generate the abstract, the introduction and the conclusion sections.

A.4.1 Abstract Generation

INPUT:

Competitive Multi-Agent Load Balancing with Adaptive Policies in Wireless Networks

OUTPUT:

In this paper, we propose adaptive multi-agent load balancing (AML) based on adaptive policies to achieve better performance. The adaptive policies can be designed to maximize the number of agent users and to reduce the number of latency. We present a comprehensive evaluation of AML on three wireless networks. We demonstrate that the adaptive policies outperform state-of-the-art AML strategies by an average of 6.5% and by an average of 2.5% when compared to state-of-the-art strategies. The performance of adaptive policies is evaluated on the three wireless networks with multiple users and multiple latency.

A.4.2 Introduction Generation

INPUT:

Competitive Multi-Agent Load Balancing with Adaptive Policies in Wireless Networks

OUTPUT:

Wireless networks are increasingly becoming the backbone of the modern world. The wireless networks have been the main source of energy for many years, and they are the main source of power for many businesses. However, wireless networks are also the main source of information for many people. For example, people in many countries rely on a variety of information services, such as social networks, social media, and e-mail. However, the information services are not available in all countries. Therefore, the information services are not available for all countries.

A.4.3 Conclusion Generation

INPUT:
In this paper, we propose adaptive policies that optimize the network performance of different types of wireless networks. We show that adaptive policies can achieve competitive performance for different types of wireless networks. The proposed adaptive policies have been tested in several real-world wireless networks. We find that adaptive policies outperform state-of-the-art policies for the most common wireless networks. We also show that adaptive policies can be used to optimize the network performance of wireless networks by adapting their performance to different types of wireless networks. The proposed adaptive policies are able to achieve competitive performance for different types of wireless networks.

B Appendix: Explainability Results

SHAP and LIME explanations of our classifiers.

Figure 5: RoBERTa: Example of SHAP explanation on a real abstract correctly classified.

Figure 6: RoBERTa: Example of SHAP explanation on a real misclassified abstract.

Figure 7: RoBERTa: Example of SHAP explanation on a SCIgen generated abstract correctly classified.
Figure 8: RoBERTa: Example of SHAP explanation on a GPT-2 generated abstract correctly classified.

Figure 9: RoBERTa: Example of SHAP explanation on a Galactica generated abstract correctly classified.

Figure 10: RoBERTa: Example of SHAP explanation on a ChatGPT generated abstract correctly classified.

Figure 11: Galactica: Example of SHAP explanation on a real paper correctly classified.

Figure 12: Galactica: Example of SHAP explanation on a misclassified real paper.

Figure 13: Galactica: Example of SHAP explanation on a Galactica generated paper correctly classified.
Figure 14: Galactica: Example of SHAP explanation on a misclassified Galactica generated paper.

Figure 15: RoBERTa: Example of LIME explanation on a real abstract correctly classified.

Figure 16: RoBERTa: Example of LIME explanation on a SCIgen generated abstract correctly classified.

Figure 17: RoBERTa: Example of LIME explanation on a GPT-2 generated abstract correctly classified.

Figure 18: RoBERTa: Example of LIME explanation on a Galactica generated abstract correctly classified.

Figure 19: RoBERTa: Example of LIME explanation on a ChatGPT generated abstract correctly classified.